a2 United States Patent

Resch et al.

US009344500B2

US 9,344,500 B2
*May 17, 2016

(10) Patent No.:
(45) Date of Patent:

(54) DISTRIBUTED STORAGE TIME
SYNCHRONIZATION BASED ON STORAGE
DELAY

(71) Applicant: CLEVERSAFE, INC., Chicago, I,
(US)

(72) Inventors: Jason K. Resch, Chicago, IL. (US);
Gary W. Grube, Barrington Hills, IL.
(US); Timothy W. Markison, Mesa, AZ
(US)

(73) Assignee: International Business Machines

Corporation, Armonk, NY (US)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 8 days.

This patent is subject to a terminal dis-
claimer.

(21) Appl. No.: 14/319,282

(22) Filed: Jun. 30,2014
(65) Prior Publication Data
US 2014/0317226 Al Oct. 23, 2014

Related U.S. Application Data

(63) Continuation of application No. 12/886,368, filed on
Sep. 20, 2010, now Pat. No. 8,990,585.

(60) Provisional application No. 61/290,757, filed on Dec.

29, 2009.
(51) Imt.ClL
HO4L 29/00 (2006.01)
HO4L 29/08 (2006.01)
(Continued)
(52) US.CL
CPC HO4L 67/1097 (2013.01); GO6F 11/00
(2013.01); GOGF 11/1076 (2013.01);
(Continued)

212

(58) Field of Classification Search

CPC ..ccovvvrvvnennne HO04L 29/08549; HO4L 67/1097,
HO04L 2012/6467; HO4L 63/10; GOGF
17/3019; GO6F 17/302; GO6F 11/00; GO6F
11/10; GOG6F 21/60; GOGF 21/62; GOGF
2221/2113; GOGF 2221/2137; GO6F
2221/2141
USPCccoenee 707/687-699; 726/1-4, 21, 26-30;
713/164-167, 189-194; 709/201-203,
709/217-229

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

4,092,732 A 5/1978 Ouchi
5,454,101 A 9/1995 MacKay et al.
(Continued)
OTHER PUBLICATIONS

Shamir; How to Share a Secret; Communications of the ACM; vol.
22, No. 11; Nov. 1979; pp. 612-613.

Rabin; Efficient Dispersal of Information for Security, Load Balanc-
ing, and Fault Tolerance; Journal of the Association for Computer
Machinery; vol. 36, No. 2; Apr. 1989; pp. 335-348.

Chung; An Automatic Data Segmentation Method for 3D Measured
Data Points; National Taiwan University; pp. 1-8; 1998.

(Continued)

Primary Examiner — Madhuri Herzog
(74) Attorney, Agent, or Firm — Garlick & Markison;
Timothy W. Markison

(57) ABSTRACT

A method begins with a processing module receiving a data
retrieval request and obtaining a real-time indicator corre-
sponding to when the data retrieval request was received. The
method continues with the processing module determining a
time-based data access policy based on the data retrieval
request and the real-time indicator and accessing a plurality
of dispersed storage (DS) units in accordance with the time-
based data access policy to retrieve encoded data slices. The
method continues with the processing module decoding the
threshold number of encoded data slices in accordance with
an error coding dispersal storage function when a threshold
number of the encoded data slices have been retrieved.

20 Claims, 14 Drawing Sheets

receive request to retrieve
slices

214

determine access policy

determine timestamp

218

retrieve slice(s)

220

determine send delay

222

determine if time to send

Y
send slicefs) to requester

US 9,344,500 B2

Page 2
(51) Int.ClL 2004/0122917 Al 6/2004 Menon et al.
GO6F 1100 2006.01 2004/0215998 Al 10/2004 Buxton et al.
GO6F 17/30 (2006 01) 2004/0228493 Al 11/2004 Maet al.
(2006.01) 20050100022 Al 5/2005 Ramprashad
GO6F 21/60 (2013.01) 2005/0114594 Al 5/2005 Corbett et al.
GGl 21/62 (2013.00) 20030131903 AL 62008 Fatelatr
atula, Jr.
HO4L 29/06 (2006.01) 2005/0132070 Al 6/2005 Redlich et al.
GOOF 11/10 (2006.01) 2005/0144382 Al 6/2005 Schmisseur
GO6F 11/08 (2006.01) 2005/0229069 Al 10/2005 Hassner
HO4L 12/64 (2006.01) 2006/0047907 Al 3/2006 Shiga et al.
(52) US.Cl 2006/0136448 Al 6/2006 Cialini et al.
e L 2006/0156059 Al 7/2006 Kitamura
CPC GO6F17/30194 (2013.01); GOGF 21/60 2006/0224603 Al 10/2006 Correll, Jr.
(2013.01); GO6F 21/62 (2013.01); HO4L 2007/0079081 Al 4/2007 Gladwin et al.
29/08549 (2013.01); HO4L 63/10 (2013.01); %88;;88;38% :i 3%88; g%agwm et a{
GOGE" 11/08 (2013.01); GO6I" 2211/1028 2007/0088970 Al 4/2007 Buitxzf;f '
(2013.01); GO6F 2221/2137 (2013.01); GO6F 2007/0174192 Al 7/2007 Gladwin et al.
2221/2141 (2013.01); HO4L 63/108 (2013.01); 2007/0214285 Al 9/2007 Au etal.
HO4L 2012/6467 (2013.01) 2007/0234110 Al 10/2007 Soran et al.
2007/0283167 Al 12/2007 Venters, III et al.
. 2009/0094251 Al 4/2009 Gladwin et al.
(6 References Cited 2009/0094318 Al 4/2009 Gladwin et al.
2010/0023524 Al 1/2010 Gladwin et al.
U.S. PATENT DOCUMENTS 2010/0250723 Al* 9/2010 Kameiccoooonnn. HO4L 12/185
709/223
5485474 A 1/1996 Rabin
5,774,643 A 6/1998 Lubbers et al. OTHER PUBLICATIONS
5,802,364 A 9/1998 Senator et al.
5,809,285 A 9/1998 Hilland Plank, T1: Erasure Codes for Storage Applications; FAST2005, 4th
g’gi?’ég? ﬁ N ;;iggg gekleta etal. HOAN 21/262 Usenix Conference on File Storage Technologies; Dec. 13-16, 2005;
941, AY e
Y 700233 PR LA _
5087.622 A 11/1999 Lo Verso cf al Wildi; Java iSCSi Initiator; Master Thesis; Department of Computer
5’991’4 14 A 11/1999 Garay ot al ' and Information Science, University of Konstanz; Feb. 2007; 60 pgs.
6’0 12’ 159 A 1/2000 Fisch}:er ot al Legg; Lightweight Directory Access Protocol (LDAP): Syntaxes and
6.058.454 A 5/2000 Gerlach et al Matching Rules; IETF Network Working Group; RFC 4517; Jun.
Y ' 2006; pp. 1-50.
6,128,277 A 10/2000 Bruck et al. > PP
6’175’57 1 Bl 1/2001 HI;[CdOSth al Zeilenga; Lightweight Directory Access Protocol (LDAP): Interna-
6:192:472 Bl 2/2001 Garay et al. ' tionalized String Preparation; IETF Network Working Group; RFC
6,256,688 Bl 7/2001 Suetaka et al. 4518; Jun. 2006; pp. 1-14.
6,272,658 Bl 8/2001 Steele et al. Smith; Lightweight Directory Access Protocol (LDAP): Uniform
6,301,604 B1 10/2001 Nojima Resource Locator; IETF Network Working Group; RFC 4516, Jun.
6,356,949 Bl 3/2002 Katsandres et al. 2006; pp. 1-15.
6,366,995 Bl 4/2002 Vilkov et al. Smith; Lightweight Directory Access Protocol (LDAP): String Rep-
g,iz‘s‘,ggg g} ‘7‘; %88% geters et a%. resentation of Search Filters; IETF Network Working Group; RFC
Lo, eters et al. 4515; Jun. 2006; pp. 1-12.
g’j ig’ggg g} ;ggg% ;’szlker tal Zeilenga; Lightweight Directory Access Protocol (LDAP): Directory
6’567’948 R2 5/2003 Serf: Zt gl' Information Models; IETF Network Working Group; RFC 4512; Jun.
6571282 Bl 52003 Bowman-Amuah 2006, pp. 1-49.
6,609,223 Bl 8/2003 Wolfgang Sciberras; Lightweight Directory Access Protocol (LDAP): Schema
6,718,361 Bl 4/2004 Basani et al. for User Applications; IETF Network Working Group; RFC 4519,
6,760,808 B2 7/2004 Peters et al. Jun. 2006; pp. 1-33.
6,785,768 B2 8/2004 Peters et al. Harrison; Lightweight Directory Access Protocol (LDAP): Authen-
6,785,783 B2 8/2004 Buckland tication Methods and Security Mechanisms; IETF Network Working
6,826,711 B2 11/2004 Moulton et al. Group; RFC 4513; Jun. 2006; pp. 1-32.
6,879,596 Bl 4/2005 D_OOPIY Zeilenga; Lightweight Directory Access Protocol (LDAP): Technical
;’82431’46155;? g é 42‘; %882 ?melkow etal. Specification Road Map; IETF Network Working Group; RFC 4510;
Deat orgenson Jun. 2006; pp. 1-8.
;’8%3’?8? E% 47‘;5882 %Zg%inj:;al' Zeilenga; Lightweight Directory Access Protocol (LDAP): String
7’ 103’824 B2 0/2006 Halford ' Representation of Distinguished Names; IETF Network Working
7,103,915 B2 9/2006 Redlich et al. Group; RFC 4514; Jun. 2006, pp. 1-15.
7,111,115 B2 9/2006 Peters et al. Sermersheim; Lightweight Directory Access Protocol (LDAP): The
7,140,044 B2 11/2006 Redlich et al. Protocol; IETF Network Working Group; RFC 4511; Jun. 2006; pp.
7,146,644 B2 12/2006 Redlich et al. 1-68.
7,171,493 B2 1/2007 Shu et al. Satran, et al.; Internet Small Computer Systems Interface (iSCSI);
7,222,133 Bl 5/2007 Raipurkar et al. IETF Network Working Group; RFC 3720; Apr. 2004; pp. 1-257.
7,240,236 B2 7/2007 Cuits et al. Xin, et al.; Evaluation of Distributed Recovery in Large-Scale Stor-
;’égé’g ;3‘ g% lg; 588; imll e;al. ol age Systems; 13th IEEE International Symposium on High Perfor-
2002/&)062’422 Al 52002 B?lt:lerv(ﬂ)zf)rli}fe?tlél mance Distributed Computing; Jun. 2004; pp. 172-181.
5002/0166070 Al 112002 Ulrich ef al ’ Kubiatowicz, et al.; OceanStore: An Architecture for Global-Scale
5003/0018927 Al 1/2003 Gadir et al ' Persistent Storage; Proceedings of the Ninth International Confer-
2003/0037261 Al 2/2003 Meffert et al. ence on Architectural Support for Programming Languages and
2003/0065617 Al 4/2003 Watkins et al. Operating Systems (ASPLOS 2000); Nov. 2000; pp. 1-12.
2003/0084020 Al 5/2003 Shu
2004/0024963 Al 2/2004 Talagala et al. * cited by examiner

US 9,344,500 B2

Sheet 1 of 14

May 17, 2016

U.S. Patent

1 o3 Attt Inrer) 9 1miaal) A8oione macradan H —
3T ST SURAAWSS | @ Aowaw (NSQ) y4omiau 28eiols pasladsip _ Oz Hun 3uissanoud
1 I Ayu893u) 98e101S
1°9H | [9Ewunsa | ! —
_ o 00 | 9¢Z 9402
I N N | Suindwoo
8Y X A300s D3 9% T A99|sD3
— (1 1] o000 TE 22epul NSd
8T Hun —= — y
SuiFeuew sq ¥ X T 9015 03 cr T TINSI3
oo
gg 2400 [T 1]
Sunndwod i
L [SACAIH
TE 90BJIAIU| [» V2 yiomiau
/lfr\(\u
| 8 x A20us03 |@ee| TFT AB2UsOT |
® ° QESANS ——7 T
® ®
® ®
| X 1200507 |eee| THT To20s07 |)
(1Y)} —
¥T 201A3p Jasn 7€ 90eJ2IUl NSA
_ OF 2oeMalUl “A v“ OF soepaaul _ _w adepaIul NSA
3z 0100 0 0 FE Suissasoid
Sunndwoo € 8uissanoud sq sa
97 2402 3uiandwod 9z 3402 Sunndwod
07 ¥oo|q elep
10/3 BE 9| eep 9T Nun Bujssaoouad sq TT 901ABP JBsn

US 9,344,500 B2

Sheet 2 of 14

May 17, 2016

U.S. Patent

G J1un 8uissaooJd

solydessd oapia

aoi
T T T T T T T T T TS TS TS T T T T T T T T |
_ _
_
9/ a|npow Y7 ajnpow TL 3|npouw aeLia1ul 0Z @|npow 89 o|npow 99 a|npow |
@Jdelieiul NSa QJeJJoiul dH yse(} oJkjJoiu] >lomiou oJeliolu] vaH QJeJJo1ul dsn “
Y 7} Y y A A _
_ _
_ _
: I
_
_ YVY VVY _
_ _
_ 3G 22e)491Ul 59 _
_ 89 21Ul |Dd 9 |
_ _
| x SOId INOY !
_ A _
_ _
_ A 4 A 4 =5 ajnpouw I
_ — — _
0B
_ 9% | 09 421Ul 0e4191Ul |
J9]|043u00 Q| o] _
| 22IAB3pP Q| |
| y |
_ _
| I
| : |
— — — _
I 7S Alowaw 7S 19]|0J1u02 05 2|hpow _
_ all A . all. .y
| ulew il Alowaw bl Suissasooud _
_ _
_ _
_ _
[A 4 |
_ _
_ _
_ _
_ _
| I
_ _
_

US 9,344,500 B2

Sheet 3 of 14

May 17, 2016

U.S. Patent

8 X A 921|5 e1EP POPOI JOUID €'Ol4 9F T A 9215 e1Ep popOoI OIS
sweu 321|S sweu 21|
e > ®
e _ Z€ 2081491UI 18USq _ e
- ® - ®
TF X T 921|S e1Ep PIpPOI OIS — eee || TFT T 32s elep popod Jodsd
aweu a2l|S [T — dweu oIS
8% X~ A9l elep coe 9% T A 90l|s exep
pPapod JolIa pPapod J0LI3 _ 78 a|npow ageJo1s _
aweu 321|§ ° aweu 201|§ A
[]
— —_— . — —_—
i X 1 90ls ejep oo ¢ 1T T odls elep
papod Jodis papod Jodls
aweu a2|IS aweu 2|[S
Z8 a|npow pud
aweu eleq | asas | uadynen | glynea | xepuladis Y
RINEELS
uollewJou| Suianoy |essaAluNn
HNeA
7€ sweu 201|S 0% 1valqo
— elep
76 A UBWSas erep v
eeo 08 9|npow ssadoe g8 oweu
= p3lqo
06 T Juswsss eyep
GE 2wWeu 324nos mwmw_
0 103(qo eep — Y «—>
87 d|hpow Aemaled «—»

GE sWeU 32Jn0S

al 3|y _ AS3. _ uag 1nep

al ynep

€ aWeu 224n0S

Y€ onpow uissacodd sq

interface

US 9,344,500 B2

Sheet 4 of 14

May 17, 2016

U.S. Patent

yooyserepd3 [g | «q|eq|eq|sig g @ | q | s 'Ol

€ 291|s 18P I7 _ oEq) _ 9zq _ g _ 8Iq _ viq _ orq _ oq| _ g _

(o)

7 1901]5 <

zooserepd3 [sq [sq | wq | nq|eq|sq | sq | q |

Taouserepd3 [|wq|oq g |cq|sq | vq | o |

EQQQEQQQE YY) _E_ooo_ﬁ_mg_oooa S

6 3uawSas elep papodu? 4o sug z€

¥ '5id
r—-— - """ —"—"—"—-—"—-"—-—"—-"—-— et e
| 78 s|npow pus _
I
I —
68 Jorgindivew — — €g Joiendiuew |
<« < > J201|s-9 < » J2p022 < » :
_ -2p 921|s-1s0d £8 A0[5-9p a8 49poI9p | -ap 921|s-a.d y I .
: I I
| I I
| ‘€Z 1un |011U0D b__snw._“ "
I
X 921|s 238p I3 _ | | |
— I I
® | T8 Joyeindivew _ _ g7 Jorejndiuew
4 <«——> : «—> 1901[S «——> Japoou <> : 1>
P4 | 221|s-1s0d L _ L1 3podUd 301|s-a4d |
T 9dlls eep D3 _ “. I
¥6 1uaw8dss elep papoaua _ _ 76-06 1uaw3ias erep

US 9,344,500 B2

Sheet 5 of 14

May 17, 2016

U.S. Patent

J21sanbaJ 01 adessow
2|gejieaeun puas

Ll

L9l

Joi1senbal 0] 28essaw
9lge|leA_UN puas

Ja1sanbal

0} puas pue AJowaw
W0l S3I1|S anAdLIBl

a|qe|ieae

[s[43

a|qe|iene

J9158nbaJ 01 9|qe|ieae

SIS JI UILLIDIDP

8l

3|qe|leAe 0[S JI BUIWIDIBP

I

~

A

A

dwejsawn

aulWi=1ap

N

L

A

A

Aoijod ssaooe aulwi18p

(=
—
~—

A

A

S90S

oAdl]la) O 1sanbay CLVERED]

0|

ol

9'9I4

Alowsw ul dweisawil pue
‘Adljod ssa20k ‘($)901|S 24018

— A
901
dwejsawil auiwialap
0T A
Adljod

SSad0e pue (S)adl|s aAlsdal

20

US 9,344,500 B2

Sheet 6 of 14

May 17, 2016

U.S. Patent

(s)@0118 @1913p

JopIsuodal

paJISap UOI}eJaPISUOIDI
J dUlWIRIap

cel

8 "Ol4

a8essaw
UOI1EJ3PISUOIDI PUDS

el

d|ge|ieae
swaWos

d|qe|ieae

Al[lge[leA. 3D1|S BUIWJRIDP

a A

duweisawil aulwIalap

8zl)

~—

Adljod ssadde sulwda1ap

9zZ1 A

(s)sweu 221|s aulw.ia1p

~f

4} fe

US 9,344,500 B2

Sheet 7 of 14

May 17, 2016

U.S. Patent

6 Ol
sHun s@
0} Adijod ssad2e mau puss
TN A
Adljod

SSa237e Mau aullalap

1

dweisswy aulwJalap

45
A

Adijod
SS922E MBU e sI|qe1sa
03 JAYIdyM aUIWJId1ap

oVl a

(s)sweu a21|s sulw.islsp

R

US 9,344,500 B2

Sheet 8 of 14

May 17, 2016

U.S. Patent

301 "9l

g0} Ol

Vol Ol

ree—ee——_— s, s, s, s, s, s, s, s, s, s, s, s s s e, ———— I_
| _
| Z }nea Z }nea Z ynea Z }nea Z }nea C }neA _
I T ynea T 1IneA T 1nea _
“ 91uUnsQ S Hun sg ¥ uun sg € Hun s cuunsqg T Hunsa |

I
| 75T 19s adeusols Alowaw NSQ |
e e e e e e e e e e e e o o o o —— —— — — — — — — — — — — — — — — — —
r-Hr-"-"""""""""-""--""""""-"-"""-"-""""-"-"""-""—-""-"-"-""-"""-"-""-""-"{$ - {- ¥""-"""—7- "¥—_-—_—_———— I_
_ _
| Z }nea Z }nea Z }nea C }neA _
| T }nea T 3nea T 3nea I
“ 911un sQ G 1un sg ¥ uun sg € 1un s@ Z1un sq Tuunsg | |

_
| 0GT 19s 28e101s Alowaw NSQ |
b e e o o o o o — — — — —— —— —— — —— — ———— — — — —— — — — — — — — ——
r—-eee—--m-m= I_
| _
| Z) nea Z ynea Z inea c}nea _
| T 3nea T }nea T 1nea |
“ 9 1uUnsQ FRIDIENG| ¥ 1un sg €uungQg cuungqg T Hunsq |

_
I QYT 19S a8es01s Alowaw NSQ |
b o e e o o o

WV 00-CT
—IANd 00:£

Wd 00:£
— AV 009

US 9,344,500 B2

Sheet 9 of 14

May 17, 2016

U.S. Patent

19s adel0ls P uiened .
sq o1 Adijod ssa2oe puss [Adljod ssadoe sulwJaa1ap Ll
8l1 9zl 4
uJared Aojjod ssaodoe P Alpgepieae juiofsip P
snoinaud aulwdalep | se Aoljod sseooetes | wiolsip
Ll Ll
195 23el0o1s P uJaned
sQ o1 Aaljod ssaaoe puss [Ad1jod ssa20e BulwIBlep
0Zv 891 ‘
awayds
$sP008 agueyo
usainied Adrjod ssedoe | Ajigejiene fewiutw | aUIWIA13P A N
snoinaud auiwalep | se Aoljod sseooeles |
991 ol [ewiutw 86l
Adljod ssadoe adueyd
01 3W1} }1 UIWIRIDP
9G1 1
19S 93eJ0)S P a|qe|ieae P
5Qq 01 Adijod sseaoe puas [AjIny se Aoljod ssadoe yes | in dwelssw aulwJa1ap

291

091

<

L

US 9,344,500 B2

Sheet 10 of 14

May 17, 2016

A E Ja1sanbau 03 puss
pue 193[qo e1ep aulwIa1ap
6}
A
ploysaJyy
N
61

(S ERITHETNEREY!

A

Q
(&>}
~

(sjuunsg
0] Hmws_um‘_ |eAsli1al puas

A g

0
—

(s)uun sqg suiwJsisp

U.S. Patent

anuIIUoD v 98T
N A
Adljod ssea0e sulwIR1ep
A 731
anunuod
01 aWih i sultlii=19p J01EDIpU| SW(}-|e3J Ulelqo
4 861 - —
Ja1sanbal
03 a8essow 3uipuad puss 1s9nba,
— |[eAR1J13] BIEP B DA1222J
4 961 —

US 9,344,500 B2

Sheet 11 of 14

May 17, 2016

U.S. Patent

¢l "ol
syun
g 1un 3uissaocoud cqie
Sg e aAnllie =} uels = 1
d P}
€dpl €qd ps
Pl 79 ps
Td P} T4 ps
7l 'Ol 2
suunsg 3uissacold g
1€ 9|ge|leAE =} WwoJj puas =1
vV pe vV P}
eV Pl
cv pe v P
v pe TV P}

dun
8uissanoud

Sda

€l 9l
4 p} 7V p}
¥ 1unsq
l|s ¥ Jeyd 2l|s ¢ se|pid
€d p} £V pi
€ HuUn sQ
l|s € Jeyd IS € Je||id
zd p} v p}
Zaunsg
IS 7 Je|id 0I|s T Jey|id
Td P} TV P}
T 3un sg
IS T Je|id 0I|s T Jey|id

Vv iun
Suissanoud

Sd

US 9,344,500 B2

Sheet 12 of 14

May 17, 2016

U.S. Patent

Ll "Ol4

J21sanbal 01

(s)adls puas

9¢

N

44

puss 0] sWi}

J aulWJelap

A

) (444

iy
»

Aejap puss

aUllWJ=lap

A

h

O
N
N

(s)ao11s ans=l

A

h

[so/
—
AN

dweisawn

auUlWolap

A

h

©
—
N

Adirjod ssaooe sulwiRlep

A

h

<
—
N

FEMI
231184 0} 15enbal a8

N
—
N

91 'Ol

Hun sq yoea o3 sAejap
AJljlge|ieae pue sad||s puas

ﬁ A

109[qo eyep
WoJ) $321|S e1EP DT 31ea4d

% A

1UN s Yoes Joy shejap
AM|ige|ieae suILLIDIDP

90z A

19s a38eJ03s
Alowaw NSQ 40 sHUN sq
0} sAej2p awl} aulwialap

ﬁ A

12s adel01s Alowaw
NSQ pue sia12weled
|euoliesado auiwJIRp

Z07 A

2J0]1S 0] u—um_.QO elep aAlsd=ld

O
O
N

US 9,344,500 B2

Sheet 13 of 14

May 17, 2016

U.S. Patent

61 'Ol
g8 V sun

suun duissadold s

sdieaAale =1 WOoJ} puss =1
8 P 8 Ps
€4 p1 €q ps
zd pa aaps
14 P 18 ps
vV Pl vV ps
£V P
v P cvps
TV P} 1V ps

81 OId
<
yuunsag| ooysyaed 8uissaooud
<€ e
v Pl
€dpi
€ Hun s@a 201|s € Jed
€V P =
cd p? Y
¢ Hun s 221|s Z J4ed
T wm
Td Pl
< v Hun
THansa s T 4eyiid duissasoud
v pl sq

US 9,344,500 B2

Sheet 14 of 14

May 17, 2016

U.S. Patent

auop

103[qo eyep wouy Jejid yoes
10} S@21|S B1EP DT 21E3UD

T A

Q
N

}un sq Yyoes
0} sAe|op puas aulwialap

T A

<o/
[qV

Juas sJe|id [|e §1 uIWIDIBP

77T ¥

N

19S 28eJ0]s
Alowsw NsQ jo sHun sg
0} SAe|op BW|} BUIWIBIBP

1un s@ 01 (s)a1|s puas

ﬁ A

&Y
<
[q\

s324n0s duissadoud sq
|errualod Jaylo aujwialap

ﬁ A

125 2§eJ01s Alowaw
NSQ pue siaiaweled
|euoliledado suiwJ13p

Pu=s 031 swil JI 2UlWIL212pP

A

Q|
AN

€

ﬂ A

2J0]1S 01 puw.—no elep =aAl=dal

0
N
(9]

US 9,344,500 B2

1
DISTRIBUTED STORAGE TIME
SYNCHRONIZATION BASED ON STORAGE
DELAY

CROSS REFERENCE TO RELATED
APPLICATIONS

The present U.S. Utility Patent Application claims priority
pursuant to 35 U.S.C. §120 as a continuation of U.S. Utility
application Ser. No. 12/886,368, entitled “Time Based Dis-
persed Storage Access,” filed Sep. 20, 2010, which claims
priority pursuant to 35 U.S.C. §119(e) to U.S. Provisional
Application No. 61/290,757, entitled “Distributed Storage
Time Synchronization,” filed Dec. 29, 2009, both of which
are hereby incorporated herein by reference in their entirety
and made part of the present U.S. Utility Patent Application
for all purposes.

BACKGROUND OF THE INVENTION

1. Technical Field of the Invention

This invention relates generally to computing systems and
more particularly to data storage solutions within such com-
puting systems.

2. Description of Related Art

Computers are known to communicate, process, and store
data. Such computers range from wireless smart phones to
data centers that support millions of web searches, stock
trades, or on-line purchases every day. In general, a comput-
ing system generates data and/or manipulates data from one
form into another. For instance, an image sensor of the com-
puting system generates raw picture data and, using an image
compression program (e.g., JPEG, MPEG, etc.), the comput-
ing system manipulates the raw picture data into a standard-
ized compressed image.

With continued advances in processing speed and commu-
nication speed, computers are capable of processing real time
multimedia data for applications ranging from simple voice
communications to streaming high definition video. As such,
general-purpose information appliances are replacing pur-
pose-built communications devices (e.g., a telephone). For
example, smart phones can support telephony communica-
tions but they are also capable of text messaging and access-
ing the internet to perform functions including email, web
browsing, remote applications access, and media communi-
cations (e.g., telephony voice, image transfer, music files,
video files, real time video streaming. etc.).

Eachtype of computer is constructed and operates in accor-
dance with one or more communication, processing, and
storage standards. As a result of standardization and with
advances in technology, more and more information content
is being converted into digital formats. For example, more
digital cameras are now being sold than film cameras, thus
producing more digital pictures. As another example, web-
based programming is becoming an alternative to over the air
television broadcasts and/or cable broadcasts. As further
examples, papers, books, video entertainment, home video,
etc. are now being stored digitally, which increases the
demand on the storage function of computers.

A typical computer storage system includes one or more
memory devices aligned with the needs of the various opera-
tional aspects of the computer’s processing and communica-
tion functions. Generally, the immediacy of access dictates
what type of memory device is used. For example, random
access memory (RAM) memory can be accessed in any ran-
dom order with a constant response time, thus it is typically
used for cache memory and main memory. By contrast,

10

15

20

25

30

35

40

45

55

60

65

2

memory device technologies that require physical movement
such as magnetic disks, tapes, and optical discs, have a vari-
able response time as the physical movement can take longer
than the data transfer, thus they are typically used for second-
ary memory (e.g., hard drive, backup memory, etc.).

A computer’s storage system will be compliant with one or
more computer storage standards that include, but are not
limited to, network file system (NFS), flash file system (FFS),
disk file system (DFS), small computer system interface
(SCSI), internet small computer system interface (iSCSI), file
transfer protocol (FTP), and web-based distributed authoring
and versioning (WebDAV). These standards specify the data
storage format (e.g., files, data objects, data blocks, directo-
ries, etc.) and interfacing between the computer’s processing
function and its storage system, which is a primary function
of the computer’s memory controller.

Despite the standardization of the computer and its storage
system, memory devices fail; especially commercial grade
memory devices that utilize technologies incorporating
physical movement (e.g., a disc drive). For example, it is
fairly common for a disc drive to routinely suffer from bit
level corruption and to completely fail after three years of use.
One solution is to utilize a higher-grade disc drive, which
adds significant cost to a computer.

Another solution is to utilize multiple levels of redundant
disc drives to replicate the data into two or more copies. One
such redundant drive approach is called redundant array of
independent discs (RAID). In a RAID device, a RAID con-
troller adds parity data to the original data before storing it
across the array. The parity data is calculated from the original
data such that the failure of a disc will not result in the loss of
the original data. For example, RAID 5 uses three discs to
protect data from the failure of a single disc. The parity data,
and associated redundancy overhead data, reduces the storage
capacity of three independent discs by one third (e.g.,
n-1=capacity). RAID 6 can recover from a loss of two discs
and requires a minimum of four discs with a storage capacity
ofn-2.

While RAID addresses the memory device failure issue, it
is not without its own failure issues that affect its effective-
ness, efficiency and security. For instance, as more discs are
added to the array, the probability of a disc failure increases,
which increases the demand for maintenance. For example,
when a disc fails, it needs to be manually replaced before
another disc fails and the data stored in the RAID device is
lost. To reduce the risk of data loss, data on a RAID device is
typically copied on to one or more other RAID devices. While
this addresses the loss of data issue, it raises a security issue
since multiple copies of data are available, which increases
the chances of unauthorized access. Further, as the amount of
data being stored grows, the overhead of RAID devices
becomes a non-trivial efficiency issue.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWING(S)

FIG. 1 is a schematic block diagram of an embodiment of
a computing system in accordance with the invention;

FIG. 2 is a schematic block diagram of an embodiment of
a computing core in accordance with the invention;

FIG. 3 is a schematic block diagram of an embodiment of
a distributed storage processing unit in accordance with the
invention;

FIG. 4 is a schematic block diagram of an embodiment of
a grid module in accordance with the invention;

FIG. 5 is a diagram of an example embodiment of error
coded data slice creation in accordance with the invention;

US 9,344,500 B2

3

FIG. 6 is a flowchart illustrating an example of storing
encoded data slices in accordance with the invention;

FIG. 7 is a flowchart illustrating an example of retrieving
encoded data slices in accordance with the invention;

FIG. 8 is a flowchart illustrating an example of deleting
encoded data slices in accordance with the invention;

FIG. 9 is a flowchart illustrating an example of updating an
access policy in accordance with the invention;

FIGS. 10A-10C are schematic block diagrams of embodi-
ments of a dispersed storage network (DSN) memory storage
set in accordance with the invention;

FIG. 11 is another flowchart illustrating another example
of'updating an access policy in accordance with the invention;

FIG. 12 is a flowchart illustrating an example of retrieving
a data object in accordance with the invention;

FIG. 13 is a schematic block diagram of another embodi-
ment of a computing system in accordance with the invention;

FIG. 14 is a timing diagram of an example storage
sequence in accordance with the invention;

FIG. 15 is a timing diagram of an example retrieval
sequence in accordance with the invention;

FIG. 16 is a flowchart illustrating an example of storing a
data object in accordance with the invention;

FIG. 17 is another flowchart illustrating another example
of retrieving encoded data slices in accordance with the
invention;

FIG. 18 is a schematic block diagram of another embodi-
ment of a computing system in accordance with the invention;

FIG. 19 is another timing diagram of another example
storage sequence in accordance with the invention; and

FIG. 20 is a flowchart illustrating an example of outputting
slices in accordance with the invention.

DETAILED DESCRIPTION OF THE INVENTION

FIG. 1is a schematic block diagram of a computing system
10 that includes one or more of a first type of user devices 12,
one or more of a second type of user devices 14, at least one
distributed storage (DS) processing unit 16, at least one DS
managing unit 18, at least one storage integrity processing
unit 20, and a distributed storage network (DSN) memory 22
coupled via a network 24. The network 24 may include one or
more wireless and/or wire lined communication systems; one
or more private intranet systems and/or public internet sys-
tems; and/or one or more local area networks (LAN) and/or
wide area networks (WAN).

The DSN memory 22 includes a plurality of distributed
storage (DS) units 36 for storing data of the system. Each of
the DS units 36 includes a processing module and memory
and may be located at a geographically different site than the
other DS units (e.g., one in Chicago, one in Milwaukee, etc.).
The processing module may be a single processing device or
a plurality of processing devices. Such a processing device
may be a microprocessor, micro-controller, digital signal pro-
cessor, microcomputer, central processing unit, field pro-
grammable gate array, programmable logic device, state
machine, logic circuitry, analog circuitry, digital circuitry,
and/or any device that manipulates signals (analog and/or
digital) based on hard coding of the circuitry and/or opera-
tional instructions. The processing module may have an asso-
ciated memory and/or memory element, which may be a
single memory device, a plurality of memory devices, and/or
embedded circuitry of the processing module. Such a
memory device may be a read-only memory, random access
memory, volatile memory, non-volatile memory, static
memory, dynamic memory, flash memory, cache memory,
and/or any device that stores digital information. Note that if

15

20

25

30

35

40

45

4

the processing module includes more than one processing
device, the processing devices may be centrally located (e.g.,
directly coupled together via a wired and/or wireless bus
structure) or may be distributedly located (e.g., cloud com-
puting via indirect coupling via a local area network and/or a
wide area network). Further note that when the processing
module implements one or more of its functions via a state
machine, analog circuitry, digital circuitry, and/or logic cir-
cuitry, the memory and/or memory element storing the cor-
responding operational instructions may be embedded
within, or external to, the circuitry comprising the state
machine, analog circuitry, digital circuitry, and/or logic cir-
cuitry. Still further note that, the memory element stores, and
the processing module executes, hard coded and/or opera-
tional instructions corresponding to at least some of the steps
and/or functions illustrated in FIGS. 1-20.

Each ofthe user devices 12-14, the DS processing unit 16,
the DS managing unit 18, and the storage integrity processing
unit 20 may be a portable computing device (e.g., a social
networking device, a gaming device, a cell phone, a smart
phone, a personal digital assistant, a digital music player, a
digital video player, a laptop computer, a handheld computer,
avideo game controller, and/or any other portable device that
includes a computing core) and/or a fixed computing device
(e.g., a personal computer, a computer server, a cable set-top
box, a satellite receiver, a television set, a printer, a fax
machine, home entertainment equipment, a video game con-
sole, and/or any type of home or office computing equip-
ment). Such a portable or fixed computing device includes a
computing core 26 and one or more interfaces 30, 32, and/or
33. An embodiment of the computing core 26 will be
described with reference to FIG. 2.

With respect to the interfaces, each of the interfaces 30, 32,
and 33 includes software and/or hardware to support one or
more communication links via the network 24 and/or directly.
For example, interface 30 supports a communication link
(wired, wireless, direct, via a LAN, via the network 24, etc.)
between the first type of user device 14 and the DS processing
unit 16. As another example, DSN interface 32 supports a
plurality of communication links via the network 24 between
the DSN memory 22 and the DS processing unit 16, the first
type of user device 12, and/or the storage integrity processing
unit 20. As yet another example, interface 33 supports a
communication link between the DS managing unit 18 and
any one of the other devices and/or units 12, 14, 16, 20, and/or
22 via the network 24.

In general and with respect to data storage, the system 10
supports three primary functions: distributed network data
storage management, distributed data storage and retrieval,
and data storage integrity verification. In accordance with
these three primary functions, data can be distributedly stored
in a plurality of physically different locations and subse-
quently retrieved in a reliable and secure manner regardless of
failures of individual storage devices, failures of network
equipment, the duration of storage, the amount of data being
stored, attempts at hacking the data, etc.

The DS managing unit 18 performs distributed network
data storage management functions, which include establish-
ing distributed data storage parameters, performing network
operations, performing network administration, and/or per-
forming network maintenance. The DS managing unit 18
establishes the distributed data storage parameters (e.g., allo-
cation of virtual DSN memory space, distributed storage
parameters, security parameters, billing information, user
profile information, etc.) for one or more of the user devices
12-14 (e.g., established for individual devices, established for
a user group of devices, established for public access by the

US 9,344,500 B2

5

user devices, etc.). For example, the DS managing unit 18
coordinates the creation of a vault (e.g., a virtual memory
block) within the DSN memory 22 for a user device (for a
group of devices, or for public access). The DS managing unit
18 also determines the distributed data storage parameters for
the vault. In particular, the DS managing unit 18 determines a
number of slices (e.g., the number that a data segment of a
data file and/or data block is partitioned into for distributed
storage) and a read threshold value (e.g., the minimum num-
ber of slices required to reconstruct the data segment).

As another example, the DS managing unit 18 creates and
stores, locally or within the DSN memory 22, user profile
information. The user profile information includes one or
more of authentication information, permissions, and/or the
security parameters. The security parameters may include
one or more of encryption/decryption scheme, one or more
encryption keys, key generation scheme, and data encoding/
decoding scheme.

As yet another example, the DS managing unit 18 creates
billing information for a particular user, user group, vault
access, public vault access, etc. For instance, the DS manag-
ing unit 18 tracks the number of times a user accesses a private
vault and/or public vaults, which can be used to generate a
per-access bill. In another instance, the DS managing unit 18
tracks the amount of data stored and/or retrieved by a user
device and/or a user group, which can be used to generate a
per-data-amount bill.

The DS managing unit 18 also performs network opera-
tions, network administration, and/or network maintenance.
As at least part of performing the network operations and/or
administration, the DS managing unit 18 monitors perfor-
mance of the devices and/or units of the system 10 for poten-
tial failures, determines the devices and/or unit’s activation
status, determines the devices’ and/or units’ loading, and any
other system level operation that affects the performance
level of the system 10. For example, the DS managing unit 18
receives and aggregates network management alarms, alerts,
errors, status information, performance information, and
messages from the devices 12-14 and/or the units 16, 20, 22.
For example, the DS managing unit 18 receives a simple
network management protocol (SNMP) message regarding
the status of the DS processing unit 16.

The DS managing unit 18 performs the network mainte-
nance by identifying equipment within the system 10 that
needs replacing, upgrading, repairing, and/or expanding. For
example, the DS managing unit 18 determines that the DSN
memory 22 needs more DS units 36 or that one or more of the
DS units 36 needs updating.

The second primary function (i.e., distributed data storage
and retrieval) begins and ends with a user device 12-14. For
instance, if a second type of user device 14 has a data file 38
and/or data block 40 to store in the DSN memory 22, it sends
the data file 38 and/or data block 40 to the DS processing unit
16 via its interface 30. As will be described in greater detail
with reference to FIG. 2, the interface 30 functions to mimic
a conventional operating system (OS) file system interface
(e.g., network file system (NFS), flash file system (FFS), disk
file system (DFS), file transfer protocol (FTP), web-based
distributed authoring and versioning (WebDAV), etc.) and/or
a block memory interface (e.g., small computer system inter-
face (SCSI), internet small computer system interface
(iSCSI), etc.). In addition, the interface 30 may attach a user
identification code (ID) to the data file 38 and/or data block
40.

The DS processing unit 16 receives the data file 38 and/or
data block 40 via its interface 30 and performs a distributed
storage (DS) process 34 thereon (e.g., an error coding dis-

10

15

20

25

30

35

40

45

50

55

60

65

6

persal storage function). The DS processing 34 begins by
partitioning the data file 38 and/or data block 40 into one or
more data segments, which is represented as Y data segments.
For example, the DS processing 34 may partition the data file
38 and/or data block 40 into a fixed byte size segment (e.g., 2"
to 2” bytes, where n=>2) or a variable byte size (e.g., change
byte size from segment to segment, or from groups of seg-
ments to groups of segments, etc.).

For eachoftheY data segments, the DS processing 34 error
encodes (e.g., forward error correction (FEC), information
dispersal algorithm, or error correction coding) and slices (or
slices then error encodes) the data segment into a plurality of
error coded (EC) data slices 42-48, which is represented as X
slices per data segment. The number of slices (X) per seg-
ment, which corresponds to a number of pillars n, is set in
accordance with the distributed data storage parameters and
the error coding scheme. For example, if a Reed-Solomon (or
other FEC scheme) is used in an n/k system, then a data
segment is divided into n slices, where k number of slices is
needed to reconstruct the original data (i.e., k is the thresh-
old). As a few specific examples, the n/k factor may be 5/3;
6/4; 8/6; 8/5; 16/10.

For each EC slice 42-48, the DS processing unit 16 creates
a unique slice name and appends it to the corresponding EC
slice 42-48. The slice name includes universal DSN memory
addressing routing information (e.g., virtual memory
addresses in the DSN memory 22) and user-specific informa-
tion (e.g., user ID, file name, data block identifier, etc.).

The DS processing unit 16 transmits the plurality of EC
slices 42-48 to a plurality of DS units 36 of the DSN memory
22 via the DSN interface 32 and the network 24. The DSN
interface 32 formats each of the slices for transmission via the
network 24. For example, the DSN interface 32 may utilize an
internet protocol (e.g., TCP/IP, etc.) to packetize the EC slices
42-48 for transmission via the network 24.

The number of DS units 36 receiving the EC slices 42-48 is
dependent on the distributed data storage parameters estab-
lished by the DS managing unit 18. For example, the DS
managing unit 18 may indicate that each slice is to be stored
in a different DS unit 36. As another example, the DS man-
aging unit 18 may indicate that like slice numbers of different
data segments are to be stored in the same DS unit 36. For
example, the first slice of each of the data segments is to be
stored in a first DS unit 36, the second slice of each of the data
segments is to be stored in a second DS unit 36, etc. In this
manner, the data is encoded and distributedly stored at physi-
cally diverse locations to improve data storage integrity and
security. Further examples of encoding the data segments will
be provided with reference to one or more of FIGS. 2-20.

Each DS unit 36 that receives an EC slice 42-48 for storage
translates the virtual DSN memory address of the slice into a
local physical address for storage. Accordingly, each DS unit
36 maintains a virtual to physical memory mapping to assist
in the storage and retrieval of data.

The first type of user device 12 performs a similar function
to store data in the DSN memory 22 with the exception that it
includes the DS processing. As such, the device 12 encodes
and slices the data file and/or data block it has to store. The
device then transmits the slices 11 to the DSN memory via its
DSN interface 32 and the network 24.

For a second type of user device 14 to retrieve a data file or
data block from memory, it issues a read command via its
interface 30 to the DS processing unit 16. The DS processing
unit 16 performs the DS processing 34 to identify the DS units
36 storing the slices of the data file and/or data block based on
the read command. The DS processing unit 16 may also

US 9,344,500 B2

7

communicate with the DS managing unit 18 to verify that the
user device 14 is authorized to access the requested data.

Assuming that the user device is authorized to access the
requested data, the DS processing unit 16 issues slice read
commands to at least a threshold number of the DS units 36
storing the requested data (e.g., to at least 10 DS units for a
16/10error coding scheme). Each of the DS units 36 receiving
the slice read command, verifies the command, accesses its
virtual to physical memory mapping, retrieves the requested
slice, or slices, and transmits it to the DS processing unit 16.

Once the DS processing unit 16 has received a read thresh-
old number of slices for a data segment, it performs an error
decoding function and de-slicing to reconstruct the data seg-
ment. When Y number of data segments has been recon-
structed, the DS processing unit 16 provides the data file 38
and/or data block 40 to the user device 14. Note that the first
type of user device 12 performs a similar process to retrieve a
data file and/or data block.

The storage integrity processing unit 20 performs the third
primary function of data storage integrity verification. In
general, the storage integrity processing unit 20 periodically
retrieves slices 45, and/or slice names, of a data file or data
block of a user device to verify that one or more slices have
not been corrupted or lost (e.g., the DS unit failed). The
retrieval process mimics the read process previously
described.

If the storage integrity processing unit 20 determines that
one or more slices is corrupted or lost, it rebuilds the cor-
rupted or lost slice(s) in accordance with the error coding
scheme. The storage integrity processing unit 20 stores the
rebuilt slice, or slices, in the appropriate DS unit(s) 36 in a
manner that mimics the write process previously described.

FIG. 2 is a schematic block diagram of an embodiment of
a computing core 26 that includes a processing module 50, a
memory controller 52, main memory 54, a video graphics
processing unit 55, an input/output (TO) controller 56, a
peripheral component interconnect (PCI) interface 58, an 10
interface 60, at least one 10 device interface module 62, a read
only memory (ROM) basic input output system (BIOS) 64,
and one or more memory interface modules. The memory
interface module(s) includes one or more of a universal serial
bus (USB) interface module 66, a host bus adapter (HBA)
interface module 68, a network interface module 70, a flash
interface module 72, a hard drive interface module 74, and a
DSN interface module 76. Note the DSN interface module 76
and/or the network interface module 70 may function as the
interface 30 of the user device 14 of FIG. 1. Further note that
the 10O device interface module 62 and/or the memory inter-
face modules may be collectively or individually referred to
as 10 ports.

The processing module 50 may be a single processing
device or a plurality of processing devices. Such a processing
device may be a microprocessor, micro-controller, digital
signal processor, microcomputer, central processing unit,
field programmable gate array, programmable logic device,
state machine, logic circuitry, analog circuitry, digital cir-
cuitry, and/or any device that manipulates signals (analog
and/or digital) based on hard coding of the circuitry and/or
operational instructions. The processing module 50 may have
anassociated memory and/or memory element, which may be
a single memory device, a plurality of memory devices, and/
or embedded circuitry of the processing module 50. Such a
memory device may be a read-only memory, random access
memory, volatile memory, non-volatile memory, static
memory, dynamic memory, flash memory, cache memory,
and/or any device that stores digital information. Note that if
the processing module 50 includes more than one processing

20

30

40

45

50

8

device, the processing devices may be centrally located (e.g.,
directly coupled together via a wired and/or wireless bus
structure) or may be distributedly located (e.g., cloud com-
puting via indirect coupling via a local area network and/or a
wide area network). Further note that when the processing
module 50 implements one or more of'its functions via a state
machine, analog circuitry, digital circuitry, and/or logic cir-
cuitry, the memory and/or memory element storing the cor-
responding operational instructions may be embedded
within, or external to, the circuitry comprising the state
machine, analog circuitry, digital circuitry, and/or logic cir-
cuitry. Still further note that, the memory element stores, and
the processing module 50 executes, hard coded and/or opera-
tional instructions corresponding to at least some of the steps
and/or functions illustrated in FIGS. 1-20.

FIG. 3 is a schematic block diagram of an embodiment of
adispersed storage (DS) processing module 34 of user device
12 and/or of the DS processing unit 16. The DS processing
module 34 includes a gateway module 78, an access module
80, a grid module 82, and a storage module 84. The DS
processing module 34 may also include an interface 30 and
the DSnet interface 32 or the interfaces 68 and/or 70 may be
part of user device 12 or of the DS processing unit 16. The DS
processing module 34 may further include a bypass/feedback
path between the storage module 84 to the gateway module
78. Note that the modules 78-84 of the DS processing module
34 may be in a single unit or distributed across multiple units.

In an example of storing data, the gateway module 78
receives an incoming data object that includes a user ID field
86, an object name field 88, and the data object field 40 and
may also receive corresponding information that includes a
process identifier (e.g., an internal process/application ID),
metadata, a file system directory, a block number, a transac-
tion message, a user device identity (ID), a data object iden-
tifier, a source name, and/or user information. The gateway
module 78 authenticates the user associated with the data
object by veritying the user ID 86 with the DS managing unit
18 and/or another authenticating unit.

When the user is authenticated, the gateway module 78
obtains user information from the management unit 18, the
user device, and/or the other authenticating unit. The user
information includes a vault identifier, operational param-
eters, and user attributes (e.g., user data, billing information,
etc.). A vault identifier identifies a vault, which is a virtual
memory space that maps to a set of DS storage units 36. For
example, vault 1 (i.e., user 1 s DSN memory space) includes
eight DS storage units (X=8 wide) and vault 2 (i.e., user 2’s
DSN memory space) includes sixteen DS storage units (X=16
wide). The operational parameters may include an error cod-
ing algorithm, the width n (number of pillars X or slices per
segment for this vault), a read threshold T, a write threshold,
an encryption algorithm, a slicing parameter, a compression
algorithm, an integrity check method, caching settings, par-
allelism settings, and/or other parameters that may be used to
access the DSN memory layer.

The gateway module 78 uses the user information to assign
a source name 35 to the data. For instance, the gateway
module 78 determines the source name 35 of the data object
40 based on the vault identifier and the data object. For
example, the source name may contain a file identifier (ID), a
vault generation number, a reserved field, and a vault identi-
fier (ID). As another example, the gateway module 78 may
generate the file ID based on a hash function of the data object
40. Note that the gateway module 78 may also perform mes-
sage conversion, protocol conversion, electrical conversion,
optical conversion, access control, user identification, user

US 9,344,500 B2

9

information retrieval, traffic monitoring, statistics generation,
configuration, management, and/or source name determina-
tion.

The access module 80 receives the data object 40 and
creates a series of data segments 1 through Y 90-92 in accor-
dance with a data storage protocol (e.g., file storage system, a
block storage system, and/or an aggregated block storage
system). The number of segments Y may be chosen or ran-
domly assigned based on a selected segment size and the size
of the data object. For example, if the number of segments is
chosen to be a fixed number, then the size of the segments
varies as a function of the size of the data object. For instance,
if the data object is an image file of 4,194,304 eight bit bytes
(e.g., 33,554,432 bits) and the number of segments Y=131,
072, then each segment is 256 bits or 32 bytes. As another
example, if segment size is fixed, then the number of seg-
ments Y varies based on the size of data object. For instance,
if the data object is an image file of 4,194,304 bytes and the
fixed size of each segment is 4,096 bytes, then the number of
segments Y=1,024. Note that each segment is associated with
the same source name.

The grid module 82 receives the data segments and may
manipulate (e.g., compression, encryption, cyclic redun-
dancy check (CRC), etc.) each of the data segments before
performing an error coding function of the error coding dis-
persal storage function to produce a pre-manipulated data
segment. After manipulating a data segment, if applicable, the
grid module 82 error encodes (e.g., Reed-Solomon, Convo-
Iution encoding, Trellis encoding, etc.) the data segment or
manipulated data segment into X error coded data slices
42-48.

The value X, or the number of pillars (e.g., X=16), is
chosen as a parameter of the error coding dispersal storage
function. Other parameters of the error coding dispersal func-
tion include a read threshold T, a write threshold W, etc. The
read threshold (e.g., T=10, when X=16) corresponds to the
minimum number of error-free error coded data slices
required to reconstruct the data segment. In other words, the
DS processing module 34 can compensate for X-T (e.g.,
16-10=6) missing error coded data slices per data segment.
The write threshold W corresponds to a minimum number of
DS storage units that acknowledge proper storage of their
respective data slices before the DS processing module indi-
cates proper storage of the encoded data segment. Note that
the write threshold is greater than or equal to the read thresh-
old for a given number of pillars (X).

For each data slice of a data segment, the grid module 82
generates a unique slice name 37 and attaches it thereto. The
slice name 37 includes a universal routing information field
and a vault specific field and may be 48 bytes (e.g., 24 bytes
for each of the universal routing information field and the
vault specific field). As illustrated, the universal routing infor-
mation field includes a slice index, a vault ID, a vault genera-
tion, and a reserved field. The slice index is based on the pillar
number and the vault ID and, as such, is unique for each pillar
(e.g., slices of the same pillar for the same vault for any
segment will share the same slice index). The vault specific
field includes a data name, which includes a file ID and a
segment number (e.g., a sequential numbering of data seg-
ments 1-Y of a simple data object or a data block number).

Prior to outputting the error coded data slices of a data
segment, the grid module may perform post-slice manipula-
tion on the slices. If enabled, the manipulation includes slice
level compression, encryption, CRC, addressing, tagging,
and/or other manipulation to improve the effectiveness of the
computing system.

20

30

40

45

55

10

When the error coded data slices of a data segment are
ready to be outputted, the grid module 82 determines which of
the DS storage units 36 will store the EC data slices based on
a dispersed storage memory mapping associated with the
user’s vault and/or DS storage unit attributes. The DS storage
unit attributes may include availability, self-selection, perfor-
mance history, link speed, link latency, ownership, available
DSN memory, domain, cost, a prioritization scheme, a cen-
tralized selection message from another source, a lookup
table, data ownership, and/or any other factor to optimize the
operation of the computing system. Note that the number of
DS storage units 36 is equal to or greater than the number of
pillars (e.g., X) so that no more than one error coded data slice
of'the same data segment is stored on the same DS storage unit
36. Further note that EC data slices of the same pillar number
but of different segments (e.g., EC data slice 1 of data segment
1 and EC data slice 1 of data segment 2) may be stored on the
same or different DS storage units 36.

The storage module 84 performs an integrity check on the
outbound encoded data slices and, when successtul, identifies
aplurality of DS storage units based on information provided
by the grid module 82. The storage module 84 then outputs
the encoded data slices 1 through X of each segment 1
through'Y to the DS storage units 36. Each of the DS storage
units 36 stores its EC data slice(s) and maintains a local
virtual DSN address to physical location table to convert the
virtual DSN address of the EC data slice(s) into physical
storage addresses.

In an example of a read operation, the user device 12 and/or
14 sends a read request to the DS processing unit 16, which
authenticates the request. When the request is authentic, the
DS processing unit 16 sends a read message to each of the DS
storage units 36 storing slices of the data object being read.
The slices are received via the DSnet interface 32 and pro-
cessed by the storage module 84, which performs a parity
check and provides the slices to the grid module 82 when the
parity check was successtul. The grid module 82 decodes the
slices in accordance with the error coding dispersal storage
function to reconstruct the data segment. The access module
80 reconstructs the data object from the data segments and the
gateway module 78 formats the data object for transmission
to the user device.

FIG. 4 is a schematic block diagram of an embodiment of
a grid module 82 that includes a control unit 73, a pre-slice
manipulator 75, an encoder 77, a slicer 79, a post-slice
manipulator 81, a pre-slice de-manipulator 83, a decoder 85,
a de-slicer 87, and/or a post-slice de-manipulator 89. Note
that the control unit 73 may be partially or completely exter-
nal to the grid module 82. For example, the control unit 73
may be part of the computing core at a remote location, part of
auser device, part of the DS managing unit 18, or distributed
amongst one or more DS storage units.

In an example of a write operation, the pre-slice manipu-
lator 75 receives a data segment 90-92 and a write instruction
from an authorized user device. The pre-slice manipulator 75
determines if pre-manipulation of the data segment 90-92 is
required and, if so, what type. The pre-slice manipulator 75
may make the determination independently or based on
instructions from the control unit 73, where the determination
is based on a computing system-wide predetermination, a
table lookup, vault parameters associated with the user iden-
tification, the type of data, security requirements, available
DSN memory, performance requirements, and/or other meta-
data.

Once a positive determination is made, the pre-slice
manipulator 75 manipulates the data segment 90-92 in accor-
dance with the type of manipulation. For example, the type of

US 9,344,500 B2

11

manipulation may be compression (e.g., Lempel-Ziv-Welch,
Huffman, Golomb, fractal, wavelet, etc.), signatures (e.g.,
Digital Signature Algorithm (DSA), Elliptic Curve DSA,
Secure Hash Algorithm, etc.), watermarking, tagging,
encryption (e.g., Data Encryption Standard, Advanced
Encryption Standard, etc.), adding metadata (e.g., time/date
stamping, user information, file type, etc.), cyclic redundancy
check (e.g., CRC32), and/or other data manipulations to pro-
duce the pre-manipulated data segment.

The encoder 77 encodes the pre-manipulated data segment
92 using a forward error correction (FEC) encoder (and/or
other type of erasure coding and/or error coding) to produce
an encoded data segment 94. The encoder 77 determines
which forward error correction algorithm to use based on a
predetermination associated with the user’s vault, a time
based algorithm, user direction, DS managing unit direction,
control unit direction, as a function of the data type, as a
function of the data segment 90-92 metadata, and/or any other
factor to determine algorithm type. The forward error correc-
tion algorithm may be Golay, Multidimensional parity, Reed-
Solomon, Hamming, Bose Ray Chauduri Hocquenghem
(BCH), Cauchy-Reed-Solomon, or any other FEC encoder.
Note that the encoder 77 may use a different encoding algo-
rithm for each data segment 90-92, the same encoding algo-
rithm for the data segments 90-92 of a data object, or a
combination thereof.

The encoded data segment 94 is of greater size than the data
segment 90-92 by the overhead rate of the encoding algorithm
by a factor of X/T, where X is the width or number of slices,
and T is the read threshold. In this regard, the corresponding
decoding process can accommodate at most X-T missing EC
data slices and still recreate the data segment 90-92. For
example, if X=16 and T=10, then the data segment 90-92 will
be recoverable as long as 10 or more EC data slices per
segment are not corrupted.

The slicer 79 transforms the encoded data segment 94 into
EC data slices in accordance with the slicing parameter from
the vault for this user and/or data segment 90-92. For
example, if the slicing parameter is X=16, then the slicer 79
slices each encoded data segment 94 into 16 encoded slices.

The post-slice manipulator 81 performs, if enabled, post-
manipulation on the encoded slices to produce the EC data
slices. If enabled, the post-slice manipulator 81 determines
the type of post-manipulation, which may be based on a
computing system-wide predetermination, parameters in the
vault for this user, a table lookup, the user identification, the
type of data, security requirements, available DSN memory,
performance requirements, control unit directed, and/or other
metadata. Note that the type of post-slice manipulation may
include slice level compression, signatures, encryption, CRC,
addressing, watermarking, tagging, adding metadata, and/or
other manipulation to improve the effectiveness of the com-
puting system.

In an example of a read operation, the post-slice de-ma-
nipulator 89 receives at least a read threshold number of EC
data slices and performs the inverse function of the post-slice
manipulator 81 to produce a plurality of encoded slices. The
de-slicer 87 de-slices the encoded slices to produce an
encoded data segment 94. The decoder 85 performs the
inverse function of the encoder 77 to recapture the data seg-
ment 90-92. The pre-slice de-manipulator 83 performs the
inverse function of the pre-slice manipulator 75 to recapture
the data segment 90-92.

FIG. 5 is a diagram of an example of slicing an encoded
data segment 94 by the slicer 79. In this example, the encoded
data segment 94 includes thirty-two bits, but may include
more or less bits. The slicer 79 disperses the bits of the

5

10

15

20

25

30

35

40

45

50

55

60

12

encoded data segment 94 across the EC data slices in a pattern
as shown. As such, each EC data slice does not include con-
secutive bits of the data segment 94 reducing the impact of
consecutive bit failures on data recovery. For example, if EC
data slice 2 (which includes bits 1, 5, 9, 13, 17, 25, and 29) is
unavailable (e.g., lost, inaccessible, or corrupted), the data
segment can be reconstructed from the other EC data slices
(e.g., 1, 3 and 4 for a read threshold of 3 and a width of 4).

FIG. 6 is a flowchart illustrating an example of storing
encoded data slices. The method begins at step 102 where a
processing module (e.g., of a dispersed storage (DS) unit)
receives slice(s), slice names, and/or an access policy from
any one of a user device, a DS processing unit, a storage
integrity processing unit, a DS managing unit, and another DS
unit. The access policy may include a time varying availabil-
ity pattern of a DS unit, a pillar, and/or a vault. For example,
the pattern indicates that vault 1 is available to any user from
noon to midnight every day and is not available from mid-
night to noon. In another example, the pattern indicates that
pillar 2 of vault 3 is available to any user from noon to
midnight every day and is not available from midnight to
noon. In another example, the pattern indicates that pillar 2 of
vault 3 is available only to user 5 from noon to midnight every
day and is available to the DS managing unit 24 hours a day.
Note that the access policy may be previously determined by
any one or more of the user device, the DS processing unit, the
storage integrity processing unit, the DS managing unit, and
another DS unit. The access policy determination is discussed
in greater detail with reference to FIGS. 9-11.

At step 104, the processing module determines a current
timestamp based on a time function of an associated comput-
ing core 26 or of the computing system. For example, when
the slices and/or the access policy are received, the processing
module determines a current time (e.g., 10:14:53 AM GMT)
from a shared clock source (e.g., Unix time clock, POSIX
time clock, etc.) and uses the current time for the timestamp.
At step 106, the processing module coordinates storage of the
slices, slice names, access policy, and timestamp in a memory
(e.g., a local memory associated with a DS unit). In an
example, the processing module stores the slices in a main
slice memory and the slice names, access policy, and times-
tamp in a local virtual DSN address to physical location table
record such that each is linked to the other for subsequent
simultaneous retrieval.

FIG. 7 is a flowchart illustrating an example of retrieving
encoded data slices. The method begins with step 108 where
the processing module (e.g., of a dispersed storage (DS) unit)
receives a slice retrieval request from a requester, which may
be a user device, a DS processing unit, a storage integrity
processing unit, a DS managing unit, and/or another DS unit.
The request may include one or more of a slice name(s), a
requester ID, a command, an access policy update, a data
object ID, a source name, a data type, a data size indicator, a
priority indicator, a security indicator, and a performance
indicator.

At step 110, the processing module determines an access
policy to apply to the retrieval request based on one or more
of'alookup in memory of a previously received access policy,
the slice name(s), the requester 1D, a command, an access
policy update, a data object 1D, a source name, a data type, a
data size indicator, a priority indicator, a security indicator,
and performance indicator. For example, the processing mod-
ule determines the access policy based on the stored access
policy associated with the slice names.

At step 112, the processing module determines a times-
tamp for the receiving of the request. At step 114, the pro-
cessing module determines if slice(s) are available based on

US 9,344,500 B2

13

one or more of the access policy, the timestamp, a memory
status indicator, a DS unit status indicator, and a performance
indicator. In an example, the processing module determines
that the slices are currently unavailable when the access
policy pattern indicates that no user and/or unit currently has
access authorization. In another example, the processing
module determines that the slices are currently available
when the access policy pattern indicates that at least one user
and/or at least one unit currently has access authorization.
The method branches to step 118 when the processing mod-
ule determines that slice(s) are available. The method ends
with step 116 when the DS unit determines that slice(s) are
not available. At step 116, the processing module sends an
unavailable message to the requester such that the requester
may try again later or give up.

At step 118, the processing module determines if slice(s)
are available to the requester. Such a determination may be
based on one or more of the access policy, the timestamp, a
memory status indicator, a DS unit status indicator, and a
performance indicator. For example, the processing module
determines that the slices are available to the requester when
the user ID associated with the requester is listed in the access
policy pattern for the current timestamp. The method
branches to step 122 when the processing module determines
that the slice(s) are not available to the requester. The method
continues to step 120 when the processing module determines
that slice(s) are available. At step 120, the processing module
retrieves the slice(s) from memory and sends the slice(s) to
the requester. At step 122, the processing module sends an
unavailable message to the requester when the DS unit deter-
mines that the slice(s) are not available to the requester.

FIG. 8 is a flowchart illustrating an example of deleting
encoded data slices. The method begins at step 124 where a
processing module (e.g., of one of a DS unit, a DS processing
unit, a storage integrity processing unit, the DS managing unit
and/or a user device) determines one or more slice names of
slices to consider for deletion. Note that the one or more slice
names may include discrete and non-contiguous slice names
and/or a contiguous range (e.g., that are associated with the
same data segment and/or same data object). Such a determi-
nation may be based on one or more of where a deletion
process left off last time, a starting DSN address, a lookup, a
command, a request, a random number, a vault ID, a data
object ID, and a local virtual DSN address to physical loca-
tion table.

At step 126, the processing module determines an access
policy (e.g., who can access the slice and/or when) based on
one or more of a stored access policy for the slice names (e.g.,
the policy saved when the slice was saved in the DS unit
memory), a command, a request, a predetermination, and a
DS managing unit message. At step 128, the processing mod-
ule determines the current timestamp.

At step 130, the processing module determines slice avail-
ability (e.g., will the slice(s) ever be available again, now, or
in the future) based on one or more of the access policy, the
timestamp, a command, a request, a predetermination, the
requester, and a DS managing unit message. In an example,
the processing module determines that the slice(s) will be
available sometime when the access policy indicates that the
slice(s) are available to the DS managing unit a month from
the present time. If this is the case, the method repeats at step
124.

If, however, the processing module determines that the
slice(s) will be never again be available for a particular user
(or set of users) based on the access policy indicating that the
slice(s) are no longer available to the user device(s), the
method continues at step 132. At step 132, the processing

10

15

20

25

30

35

40

45

50

55

60

65

14

module determines if reconsideration of availability to the
user (or set of users) is desired. For instance, the processing
module determines whether a potential access policy change
is contemplated and/or implemented. Such a determination
may be based on one or more of the current access policy, a
reconsideration time window, a user device ID, a vault
lookup, a command, a predetermination, a DS managing unit
message, and the current timestamp. In an example, the pro-
cessing module determines to reconsider when the access
policy indicates that a reconsideration may be requested
within seven days of the last time the slice transitioned from
available to unavailable and that transition occurred two days
ago. In another example, the processing module determines
to not reconsider when the access policy indicates that recon-
sideration may never be requested. If reconsideration is
denied, the method continues to step 136 where the process-
ing module deletes the slice(s) from the memory or moves the
slices to an archive storage that is not accessible to the user (or
set of users).

If reconsideration is determined, the method continues at
step 134 where the processing module sends, via an interface,
a reconsideration request message to one or more of the DS
unit, the DS processing, the storage integrity processing unit,
the DS managing unit, and the user device. The message may
include any one or more of the DS unit ID, the slice name(s),
acommand, and the access policy. Inresponse, the processing
module may subsequently receive a reconsideration request
response message that includes either a denial message or a
new access policy. The processing module saves the new
access policy and utilizes the new access policy for the
slice(s) when the reconsideration request response message
contains a new access policy.

FIG. 9 is a flowchart illustrating an example of updating an
access policy. The method begins with step 138 where a
processing module (e.g., of one of'a DS processing unit, a DS
unit, a storage integrity processing unit, a DS managing unit
and/or a user device) determines one or more slice names of
slices to consider for an access policy update. Note that the
one or more slice names may include discrete and non-con-
tiguous slice names and/or a contiguous range (e.g., that are
associated with the same data segment and/or same data
object). Such a determination may be based on one or more of
an access policy reconsideration request, where a process left
off last time, a starting DSN address, a lookup, a command, a
request, a random number, a vault ID, a data object ID, and/or
a virtual DSN address to physical location table.

At step 140, the processing module determines whether to
establish a new access policy (e.g., who can access the slice
and/or when the slices can be accessed) based on one or more
of'an access policy reconsideration request (e.g., from a DS
unit), a current access policy for the slice names, a command,
a past history of access policy reconsiderations, a history of
slice access sequences, a request, a predetermination, a data
type, a security indicator, a priority indicator, a DSN memory
system status indicator, a vault utilization indicator, and a DS
managing unit message. In an example, the processing mod-
ule determines to establish a new access policy when an
access policy reconsideration request is received from a DS
unit and the history of slice access sequences indicates a
continued level of activity above a threshold. In another
example, the processing module determines to not establish a
new access policy when the access policy indicates that the
slice(s) may transition from available to never available and
the history of slice access sequences indicates that access
activity is below a threshold. The method repeats to step 138
a new access policy is not going to be established.

US 9,344,500 B2

15

When a new access policy is to be established, the method
continues at step 142 where the processing module deter-
mines the timestamp of when the decision was made. At step
144, the processing module determines a new access policy
based on one or more of an access policy reconsideration
request (e.g., from a DS unit), a current access policy for the
slice name(s), a command, a past history of access policy
reconsiderations, a history of slice access sequences, a
request, a predetermination, a data type, a security indicator,
a priority indicator, a DSN memory system status indicator, a
vault utilization indicator, and a DS managing unit message.
In an example, the processing module determines the new
access policy to extend the availability by one month when an
access policy reconsideration request is received from a DS
unit and the history of slice access sequences indicates a
continued level of activity above a threshold. In another
example, the processing module determines the new access
policy to include user ID 457 to be authorized for access
availability 24 hours a day for the next five months when a
command is received from the DS managing unit. At step 146,
the processing module sends the new access policy to the DS
units that contain the slice(s) of the slice name(s) such that the
DS units may store and utilize the new access policy.

FIGS. 10A-10C are schematic block diagrams of embodi-
ments of a dispersed storage network (DSN) memory storage
sets. As illustrated, FIGS. 10A-C represent DSN memory
storage sets 148-152 (e.g., the set of DS units that store all the
pillars of a common data segment) comprising six DS units
1-6. For example, pillar 1 slices are stored in DS unit 1, pillar
2 slices are stored in DS unit 2, pillar 3 slices are stored in DS
unit 3, pillar 4 slices are stored in DS unit 4, pillar 5 slices are
stored in DS unit 5, pillar 6 slices are stored in DS unit 6 when
the operational parameters include a pillar width of n=6 and a
read threshold of 4. Asillustrated, FIGS. 10A-C indicate slice
availability patterns in accordance with an access policy.

As illustrated, FIG. 10A indicates an access policy pattern
from the hours 0f 12:00 AM to 6:00 AM, FIG. 10B illustrates
an access policy pattern from the hours of 6:00 AM to 7:00
PM, and FI1G. 10C illustrates an access policy pattern from the
hours of 7:00 PM to 12:00 AM. Note that the access policy
pattern may vary second by second, minute by minute, day by
day, month-by-month, etc.

Based on these access policy patterns, DS units may read
and/or write slices in vault 1 and/or vault 2 during the speci-
fied times of day when the particular vault does not include an
X. For example, the pillar 2 for vault 1 is not available from
12:00 AM to 6:00 AM and the pillar 2 for vault 2 is available
from 12:00 AM to 6:00 AM as illustrated by FIG. 10 A.

Note that the access policy pattern may be utilized to
impact data security and performance of the system. For
example, the pattern may enable all of the pillars of a vault to
be available in any one or more time frames to improve
system performance. In another example, the pattern may
enable just a read threshold of the pillars of a vault to be
available in any one or more time frames to improve system
security but maintain a moderate level of system performance
(e.g., as long as those exact pillars remain active). In another
example, the pattern may never enable a read threshold of the
pillars of a vault to be available in any single time frame to
improve system security. In that scenario the pattern may
enable a read threshold of the pillars of a vault to be available
across two or more time frames. As illustrated, vault 1 never
has a read threshold (e.g., four pillars) number of pillars
available in any one of the three time periods. For example,
only pillars 4-6 are available for vault 1 from 12:00 AM to
6:00 AM, only pillars 1-3 are available for vault 1 from 6:00
AM to 7:00 PM, and only pillars 1, 5, 6 are available for vault

10

15

20

25

30

35

40

45

50

55

60

65

16
1 from 7:00 PM to 12:00 AM. As illustrated, the data seg-
ments may be retrieved from vault 1 by access vault 1 across
two timeframes. For example, a DS processing unit may
reconstruct a vault 1 data segment by retrieving slices of vault
1 from DS units 4-6 during the 12:00 AM-6:00 AM time-
frame, followed by retrieving slices of vault 1 from any one or
more of DS units 13 during the 6:00 AM-7:00 PM timeframe.

FIG. 11 is another flowchart illustrating another example
of updating an access policy. The method begins with step
154 where a processing module (e.g., of one of a DS process-
ing unit, a DS unit, a storage integrity processing unit, a DS
managing unit and/or a user device) determines a timestamp
of'the current time. At step 156, the processing module deter-
mines whether it is time to change an access policy (e.g., who
can access the slice and/or when the slice can be accessed)
based on one or more of an access policy reconsideration
request (e.g., from a DS unit), a current access policy, a
command, a past history of access policy changes, a history of
slice access sequences, a request, a predetermination, a data
type, a security indicator, a priority indicator, a DSN memory
system status indicator, a vault utilization indicator, and a DS
managing unit message. In an example, the DS processing
determines to change the access policy when an access policy
reconsideration request is received from a DS unit and the
history of slice access sequences indicates a continued level
of activity above a threshold. In another example, the DS
processing determines to change the access policy when the
DSN memory system status indicator indicates that more
security is desired. The method repeats to step 154 when the
DS processing determines to not change the access policy.

When access policy is to be changed, the method continues
at step 158 where the processing module determines an
access scheme of the access policy where the access scheme
includes one or more of a fully available scheme (e.g., all
pillars available in at least one timeframe), a minimal avail-
able scheme (e.g., just a read threshold number of pillars are
available in one or more timeframes), and a disjoint availabil-
ity scheme (e.g., a read threshold number of pillars are avail-
able across two or more timeframes). Such a determination
may be based on one or more of an access policy reconsid-
eration request (e.g., from a DS unit), the current access
policy, a command, a past history of access policy changes, a
history of slice access sequences, a request, a predetermina-
tion, a data type, a security indicator, a priority indicator, a
DSN memory system status indicator, a vault utilization indi-
cator, and a DS managing unit message.

In an example, the processing module determines the
access scheme to be fully available for the next timeframe
when the performance indicator indicates a higher level of
required performance and the security indicator indicates that
a lower level of security is allowable. In another example, the
processing module determines the access scheme to be mini-
mally available when the security indicator indicates a higher
level of required security and the performance indicator indi-
cates that a lower level of performance is allowable. In yet
another example, the processing module determines the
access scheme to be disjoint availability when the security
indicator indicates a much higher level of required security
and the performance indicator indicates that a very low level
of performance is allowable.

When the access scheme is to be fully available, the method
continues at step 160 where the processing module sets the
access policy as fully available for at least one timeframe.
Note that the access policy pattern(s) may constrain availabil-
ity of slices and/or vaults based on a function of time, user
ID(s), system unit ID(s), and/or other factors (e.g., security
priorities, performance priorities, etc.).

US 9,344,500 B2

17

At step 162, the processing module sends the access policy
to DS units of a DS unit storage set of the slices and/or vaults
of'the change such that the DS units may store and utilize the
new access policy. Note that the DS processing may send the
access policy at the start of a new timeframe transition or in
advance of one or more timeframes where the access policy
may include more than one access scheme of the access
policy.

When the access scheme is to be minimally availability, the
method continues at step 164 where the processing module
sets the access policy as minimal availability for at least one
timeframe. The method continues at step 166 where the pro-
cessing module determines a previous access policy pattern
(e.g., a lookup) to identify pillars that were unavailable and
pillars that were available.

The method continues at step 168, the processing module
determines the access policy pattern based on the previous
access policy pattern to choose which pillars to make unavail-
able and which pillars to make available such that a read
threshold number of pillars is available in any one timeframe.
For example, the processing module changes the pattern of
vault 2 from a read threshold of four available pillars (e.g., 2,
4-6) as illustrated in the timeframe of FIG. 10 A to the pattern
of'vault 2 where the read threshold of four available pillars is
different (e.g., 1-3, 6) as illustrated in the timeframe of FIG.
10 B. The method continues at step 170 where the processing
module sends the access policy to the DS units ofa DS storage
set of the slices and/or vaults of the change such that the DS
units may store and utilize the new access policy. Note that the
processing module may send the access policy at the start of
a new timeframe transition or in advance of one or more
timeframes where the access policy may include more than
one access scheme of the access policy.

When the access scheme is to be disjointly availability, the
method continues at step 172 where the processing module
sets the access policy as disjoint availability for at least one
timeframe. The method continues at step 174 where the pro-
cessing module determines a previous access policy pattern
(e.g., a lookup) to identify pillars that were unavailable and
pillars that were available. The method continues at step 176
where the processing module determines the access policy
pattern based on the previous access policy pattern to choose
which pillars to make unavailable and which pillars to make
available such that a read threshold of pillars is only available
across two consecutive timeframes. For example, the pro-
cessing module changes the pattern of vault 1 of only three
available pillars (e.g., 1, 5, 6) asillustrated in the timeframe of
FIG. 10 C to the pattern of vault 2 of three available pillars
(e.g., 4-6) as illustrated in the timeframe of FIG. 10 A. The
processing module may recreate a data segment from slices
retrieved from the available vault 1 pillars in those two time-
frames. Note that the processing module cannot recreate a
data segment from slices retrieved from the available vault 1
pillars in just one those two timeframes since three pillars are
available and the read threshold is four.

The method continues at step 178 where the processing
module sends the access policy to the DS units ofa DS storage
set of the slices and/or vaults of the change such that the DS
units may store and utilize the new access policy. Note that the
processing module may send the access policy at the start of
a new timeframe transition or in advance of one or more
timeframes where the access policy may include more than
one access scheme of the access policy.

FIG. 12 is a flowchart illustrating an example of retrieving
a data object. The method begins with step 180 where a
processing module receives a data retrieval request from a
requester. The data retrieval request may be received from any

10

15

20

25

30

35

40

45

50

55

60

65

18

one of a user device, a DS processing unit, a storage integrity
processing unit, a DS managing unit, and another DS unit.
The data retrieval request may include one or more of a data
object name, a data segment identifier, a requester ID, a
command, an access policy update, a data object ID, a source
name, a data type, a data size indicator, a priority indicator, a
security indicator, and a performance indicator. Note that the
data retrieval request may be for a data object or for one or
more data segments of a data object stored as encoded data
slices in a dispersed storage network (DSN) memory.

At step 182, the processing module obtains a real-time
indicator corresponding to when the data retrieval request
was received (e.g., a system clock time). At step 184, the
processing module determines a time-based data access
policy based on the data retrieval request and the real-time
indicator. Such a determination may be based on one or more
ofaprevious time-based data access policy, a policy schedule,
a data identifier, the real-time indicator, a requester identifier,
a data type, a priority indicator, a security indicator, and a
dispersed storage network (DSN) status indicator. For
example, the processing module determines the time-based
data access policy based on a stored access policy for the data
object name. Note that the processing module may adjust the
time-based data access policy based on priority of device
issuing the data retrieval request. For example, the processing
module determines the priority of device based on a vault look
up or by extracting the priority of device from the data
retrieval request. Alternatively, the processing module may
extract the time-based data access policy from the data
retrieval request when priority of device issuing the data
retrieval request is at a first priority level (e.g., a required
predefined priority level).

At step 186, the processing module accesses a plurality of
dispersed storage (DS) units in accordance with the time-
based data access policy to retrieve encoded data slices. The
processing module identifies a first set of DS units of the
plurality of DS units that are accessible during a first time
interval in accordance with the time-based data access policy.
In addition, or in a subsequent step, the processing module
may identify a second set of DS units of the plurality of DS
units that are accessible during a second time interval in
accordance with the time-based data access policy. Note that
the number of DS units in each of the first and second sets of
DS units is less than the threshold number of encoded data
slices.

At step 188, the processing module sends slice retrieval
messages to the DS units. In an example, the processing
module sends slice retrieval messages only to the DS units
that are known to be available now (e.g., the first set of DS
units), even if the number of pillars is below the read thresh-
old. In another example, the processing module sends slice
retrieval messages to the DS units storing the pillars of the
encoded data slices even if some of'the pillars are known to be
currently unavailable. The DS units may queue the retrieval
request for subsequent processing when the vault becomes
available in accordance with the time-based access data
policy. Alternatively, the DS units may respond with a denial
message and not queue the request.

At step 190, the processing module receives slices from the
DS units. At step 192, the processing module determines
whether a threshold number of slices have been received (e.g.,
based on counting them and comparing them to the threshold
of'the operational parameters). Note that the processing mod-
ule may send an error message to the DS managing unit when
a slice is not received within a receive time period from a DS
unit that was sent a retrieval request.

US 9,344,500 B2

19

When at least a threshold number of slices have been
received, the method continues at step 194 where the process-
ing module decodes the threshold number of encoded data
slices in accordance with an error coding dispersal storage
function when a threshold number of the encoded data slices
have been retrieved. The processing module aggregates all the
data segments to recreate the data object when the processing
module retrieves more than one data segment. The processing
module sends the data to the requester.

The method continues at step 196 where the processing
module generates a retrieval status message in accordance
with the time-based data access policy when the threshold
number of the encoded data slices has not been retrieved. The
retrieval status message may include one or more of the data
object name, the data segment ID, an indicator of the amount
of the data object retrieved so far, an indicator of the amount
of the data object pending retrieval, and an estimated time-
frame of when the data object will be fully retrieved. For
example, the processing module sends the retrieval status
message to the requester. In another example, the processing
module sends the retrieval status message to the requester for
each time the method passed through this step (e.g., each time
the processing module waits to retrieve another group of
slices).

The method continues at step 198 wherein the processing
module determines whether it is time to continue to retrieve
slices based on one or more of the time-based data access
policy, an access policy pattern, which pillars have been tried
so far, which pillars are still required, and the current real-
time indicator. For example, the processing module deter-
mines that it is not time to continue to retrieve slices when no
access policy pattern transitions have occurred and more pil-
lars are required (e.g., no new pillars are available yet). The
method repeats at step 198 when it is not time to continue to
retrieve slices and branches to step 186 when it is time to
continue retrieving slices (e.g., try new pillars when a time-
frame transition has occurred making more pillars available).

In a data storage example of operation, a processing mod-
ule receives a data write request from a requesting device,
wherein the data write request includes data. The processing
module encodes the data into a set of encoded data slices in
accordance with an error coding dispersal storage function.
Next, the processing module identifies a set of dispersed
storage (DS) units and a time-based data access policy based
on a privilege set of the requesting device. For example, the
processing module identifies the set of DS units based on the
privilege set of the requesting device and generates the time-
based data access policy based on the set of DS units. In
another example, the processing module identifies the time-
based data access policy based on the privilege set of the
requesting device and generates the set of DS units based on
the time-based data access policy. As yet another example, the
processing module identifies the set of DS units and the
time-based data access policy by obtaining a real-time indi-
cator corresponding to when the data write request was
received and identifying the set of DS units and the time-
based data access policy based on the real-time indicator. As
a further example, the processing module identifies the set of
DS units and the time-based data access policy by extracting
the identifying the set of DS units and the time-based data
access policy from the data write request when priority of the
requesting device is at a first priority level. After identifying
the DS units, the processing module outputs the set of
encoded data slices to the set of DS units in accordance with
the time-based data access policy.

FIG. 13 is a schematic block diagram of another embodi-
ment of a computing system that includes a DS processing

20

25

35

40

45

50

55

65

20

unitA, aplurality of DS units 1-4, and a DS processing unit B.
Each of DS processing units A and B may be coupled to the
plurality of DS units 1-4 via the network resulting in unique
time delay values between DS processing units A and/or B
and the plurality of DS units 1-4.

In an example of data storage, DS processing unit A
encodes a data segment (e.g., a portion of data) in accordance
with an error coding dispersed storage function to produce a
pillar 1 slice, a pillar 2 slice, a pillar 3 slice, and a pillar 4 slice.
DS processing unit A determines time delays to send infor-
mation to each of the plurality of DS units 1-4 based on one or
more of a real time query (e.g., a ping), a lookup, a message,
a vault value, a command, a message from the DS managing
unit, and a predetermination. For example the DS processing
unit A determines a first time delay between itself and DS unit
1 (td A1), a second time delay between itself and DS unit 2 (td
A2), athird time delay between itself and DS unit 3 (td A3),
and a fourth time delay between itself and DS unit 4 (td A4).

The DS processing unit A then determines the DS having
the longest time delay (td long) and determines an availability
delay (ad) number for each of the DS units based on the
longest time delay and a time delay of a path to the DS unit as:
ad=td long—td. For example, the availability delay for the path
from the DS processing unit A to the DS unit 1 is availability
delay A1 (ad Al). Note that the availability delay for the path
with the longest delay is 0.

In another example of operation, DS processing unit A
determines a read threshold number of DS units of the plu-
rality of DS units that have shortest time delays. Next, DS
processing unit A determines a DS unit with the longest time
delay (td long) of a subset of DS units that were determined to
have the shortest time delays. The DS processing unit A
determines an availability delay (ad) number for each DS unit
of a subset of DS units that were determined to have the
shortest time delays based on the longest time delay value and
the time delay of the path to the DS unit as: ad=td long—td.
The DS processing unit A determines the availability delay to
be zero for remaining DS units outside of the subset of DS
units that were determined to have the shortest time delays.
For example, the availability delay for the path from the DS
processing unit A to the DS unit 3 is availability delay A3 (ad
A3). Note that the availability delay for the path of the subset
with the longest delay is 0.

Next, the DS processing unit A sends each pillar slice and
corresponding availability delay to the corresponding DS unit
at substantially the same time. For example, DS processing
unit A sends pillar 1 slice and ad Al to DS unit 1, DS pro-
cessing unit A sends pillar 2 slice and ad A2 to DS unit 2, DS
processing unit A sends pillar 3 slice and ad A3 to DS unit 3,
and DS processing unit A sends pillar 4 slice and ad A4 to DS
unit 4. The DS unit receives the pillar slice and corresponding
availability delay from DS processing unit A. The DS unit
stores the slice in memory and establishes a slice status as
unavailable and/or pending availability (e.g., marks a table in
memory that the slice is not retrieval yet). Note that any
retrieval attempts at this moment will not result in the imme-
diate slice retrieval. The DS unit starts a timer with the value
of'the availability delay. The DS unit changes the slice status
to available such that the slice may be successtully retrieved
when the timer has expired. For example, DS unit 2 receives
pillar 2 slice and availability delay ad A2 from DS processing
unit A. DS unit 2 stores the pillar 2 slice, marks the status as
unavailable, and starts a timer with the value ad A2. DS unit
2 changes the pillar 2 slice status to available when the timer
expires. The DS unit 2 may retrieve the pillar 2 slice based on
a retrieval request.

US 9,344,500 B2

21

The slices of all of the pillars become available as a func-
tion of the delays. In an instance, the slices of all of the pillars
become available at substantially the same time. In another
instance, a read threshold slices of the DS units with the
shortest time delays become available at substantially the
same time. An example timing diagram is discussed with
reference to FIG. 14.

In another example of operation, the method enables
retrieved slices from the plurality of DS units to arrive sub-
stantially at the same time at DS processing unit B in response
to a retrieval request from DS processing unit B. DS process-
ing unit B determines time delays to retrieve information
between the each of the plurality of DS units 1-4 and DS
processing unit B. DS processing unit B and the plurality of
DS units 1-4 may be operably coupled via the network result-
ing in unique time delay values between the plurality of DS
units 1-4 and DS processing unit B. The time delay determi-
nation may be based on one or more of a real time query (e.g.,
a ping), a lookup, a message, a vault value, a command, a
message from the DS managing unit, and a predetermination.
The DS processing unit B determines a time delay between
the DS unit 1 and DS processing unit B as time delay B1 (td
B1), a time delay between the DS unit 2 and DS processing
unit B as time delay B2 (td B2), a time delay between the DS
unit 3 and DS processing unit B as time delay B3 (td B3), and
a time delay between the DS unit 4 and DS processing unit B
as time delay B4 (td B4).

In an example, DS processing unit B determines a DS unit
of'the plurality of DS units with a longest time delay (td long).
The DS processing unit B determines a send delay (sd) num-
ber for each DS unit based on the longest time delay and the
time delay of the path from the DS unit as: sd=td long—td. For
example, the send delay for the path from the DS unit 1 to DS
processing unit B is send delay B1 (sd B1). Note that the send
delay for the path with the longest delay is 0. In another
instance, the DS processing B may determine each send delay
as sd=2*td long-2*td to account for the delay in sending the
retrieval request to the DS unit.

In another example, DS processing unit B determines a
read threshold number of DS units of the plurality of DS units
that have the shortest time delays. Next, DS processing unit B
determines a DS unit with the longest time delay (td long) of
a subset of DS units that were determined to have the shortest
time delays. The DS processing unit B determines a send
delay (sd) number for each DS unit of the subset of DS units
that were determined to have the shortest time delays based
on the longest time delay value and the time delay of the path
from the DS unit as: sd=td long-td. The DS processing unit B
determines the send delay to be zero for the remaining DS
units outside of the subset of DS units that were determined to
have the shortest time delays. For example, the send delay for
the path from the DS unit 3 to the DS processing unit B is send
delay B3 (sd B3). Note that the availability delay for the path
of the subset with the longest delay is 0. In another instance,
the DS processing B may determine each send delay as
sd=2*td long-2*td to account for the delay in sending the
retrieval request to the DS unit.

In the next step, the DS processing unit B sends each DS
unit a retrieval request for the pillar slices and corresponding
send delay at substantially the same time. For example, DS
processing unit B sends a retrieval request for pillar 1 slice
and sd B1 to DS unit 1, DS processing unit B sends a retrieval
request for pillar 2 slice and sd B2 to DS unit 2, DS processing
unit B sends a retrieval request for pillar 3 slice and sd B3 to
DS unit 3, and DS processing unit B sends a retrieval request
for pillar 4 slice and sd B4 to DS unit 4.

10

15

20

25

30

35

40

45

50

55

60

65

22

The DS unit receives the pillar slice retrieval request and
corresponding send delay from DS processing unit B. The DS
unit starts a timer with the value of the send delay. The DS unit
may retrieve the pillar slice from memory and cache it. The
DS unit sends the pillar slice from the cache to DS processing
unit B when the timer has expired. For example, DS unit 2
receives a pillar 2 slice retrieval request and send delay sd B2
from DS processing unit B. DS unit 2 starts a timer with the
value sd B2. DS unit 2 retrieves the pillar 2 slice and sends it
to DS processing unit B when the timer expires.

Note that in an example of operation slices of all of the
pillars arrive at the requesting DS processing unit B at sub-
stantially the same time. In another example, a read threshold
slices of the DS units with the shortest time delays arrive at the
requesting DS processing unit B at substantially the same
time. Note that uniform availability of distributedly stored
information may be desirable when the information is of a
time sensitive nature such as financial transactions (e.g., mar-
ket arbitrage). An example timing diagram is discussed with
reference to FIG. 15.

FIG. 14 is a timing diagram of an example storage
sequence. As illustrated, the left edge of the timing diagram
illustrates the time when the plurality of slices are sent from
the dispersed storage (DS) processing at substantially the
same time (e.g., t=send from DS processing unit A). The time
delays from the DS processing unit to each DS unit of a
plurality of DS units is illustrated by td A1, td A2, td A3, and
td A4. The DS units receive the slice at the end of the time
delay and start the availability delay timers ad A1, ad A2, ad
A3, and ad A4. Note that the availability delay for the third
path ad A3=0 since td A3 is the longest of the time delay
values. The DS units change the slice status to available at
substantially the same time when the timers expire (e.g.,
t=available at DS units).

FIG. 15 is a timing diagram of an example retrieval
sequence. As illustrated, the left edge of the timing diagram
illustrates the time when the plurality of dispersed storage
(DS) units start a unique send delay timer sd B1, sd B2, sd B3,
and sd B4 upon receiving a retrieval request (e.g., t=start at
DS units). Note that the send delay for the fourth path sd B4=0
since td B4 is the longest of the time delay values. The DS
units send their slice to the DS processing unit B when the
timer expires. Note that the slices are sent from the DS units
at different times. The time delays from each of the DS units
to the DS processing unit B is illustrated by td B1, td B2, td
B3, and td B4. The slices arrive at the DS processing unit B at
substantially the same time (e.g., t=arrive at DS processing
unit B).

FIG. 16 is a flowchart illustrating an example of storing a
data object. The method begins with step 200 where a pro-
cessing module receives a store request and a data object to
store from any one of a user device, a DS processing unit, a
storage integrity processing unit, a DS managing unit, and
another DS unit. The request may include a command, a user
1D, a data object name, a data type, a data size, a priority
indicator, a security indicator, a performance indicator, opera-
tional parameters, time delay to DS units information, and
other metadata pertaining to the data object.

At step 202, the processing module determines operational
parameters and a plurality of DS units of a DSN memory
storage set based on one or more of vault information, a
predetermination, a command, the user 1D, the data object
name, the data type, the data size, the priority indicator, the
security indicator, the performance indicator, the time delay
to DS units information, and the other metadata.

At step 204, the processing module determines time delays
to send information between the DS processing and each of

US 9,344,500 B2

23

the plurality of DS units. Such a determination may be based
on one or more of a real time query (e.g., a ping), a lookup, a
message, a vault value, a command, a message from the DS
managing unit, and a predetermination. At step 206, the DS
processing determines availability delays for each DS pro-
cessing of the plurality of DS units. Such a determination may
be based on one or more of the time delays, the operational
parameters, a message, a vault value, a command, a message
from the DS managing unit, and a predetermination. In an
example, the processing module determines the availability
delay based on a DS unit with a longest time delay as previ-
ously discussed. In another example, the processing module
determines the availability delay based on a DS unit with a
longest time delay of'a read threshold subset of the plurality of
DS units with shortest time delays as previously discussed.

At step 208, the processing module encodes the data object
utilizing an error coded dispersal stored function and in accor-
dance with the operational parameters to produce encoded
data slices. The processing module then sends the encoded
data slices and corresponding availability delays to the plu-
rality of DS units at substantially the same time.

FIG. 17 is another flowchart illustrating another example
of retrieving encoded data slices. The method begins at step
212 where a processing module (e.g., of a DS unit) receives a
slice retrieval request from a requester (e.g., any one of a user
device, a DS processing unit, a storage integrity processing
unit, a DS managing unit, and a DS unit) to retrieve a slice.
The request may include one or more of slice name(s), a
requester 1D, a command, an access policy update, a send
delay, a data object ID, a source name, a data type, a data size
indicator, a priority indicator, a security indicator, and a per-
formance indicator.

At step 214, the processing module determines an access
policy to apply to the retrieval request based on one or more
of'a lookup in memory of previously received access policy,
the slice name(s), the requester ID, a command, an access
policy update, a data object ID, a source name, a data type, a
data size indicator, a priority indicator, a security indicator,
and a performance indicator. For example, the processing
module determines the access policy based on the stored
access policy for the slice names. At step 216, the processing
module determines a timestamp.

At step 218, the processing module retrieves the slice from
memory. At step 220, the processing module determines a
send delay based on one or more of a send delay received with
the slice retrieval request, a query, the access policy, the
timestamp, a memory status indicator, a DS unit status indi-
cator, and a performance indicator. In an example, the pro-
cessing module utilizes the received send delay value as the
send delay. In another example, the processing module que-
ries each of the other DS units of the storage set to determine
the time delay from each of the other DS units to retrieval
requester. The processing module determines the send delay
based on the determined time delays as previously discussed.

At step 222, the processing module starts a timer based on
the value of the send delay. The processing module deter-
mines whether it is time to send the slice to the requester
based of the timer (e.g., the timer expires). When it is time to
send, the method continues at step 226 where the processing
module sends the retrieved slice to the requester such that a
plurality of slices from a DS unit associated with the process-
ing module and other DS units of a same DS unit storage set
(e.g., the other pillars) for the same data segment substantially
arrive at the requester at the same time.

FIG. 18 is a schematic block diagram of another embodi-
ment of a computing system that includes a DS processing
unitA, a DS processing unit B, and a plurality of DS units 1-4.

10

15

20

25

30

35

40

45

50

55

60

65

24

In such a system, two or more DS processing units send EC
data slices of two or more data objects to the same set of DS
units such that the data objects are substantially received by
the DS units at the same time. Note that uniform availability
of distributedly stored information may be desirable when the
information is of a time sensitive nature such as financial
transactions (e.g., market arbitrage). For example, two or
more DS processing units may place market orders with a
clearing house by sending the orders to the same clearing
house such that the orders arrive at substantially the same
time.

In an example of operation, DS processing unit A encodes
a data segment utilizing an error coded dispersal storage
function to produce a pillar 1 slice, a pillar 2 slice, a pillar 3
slice, and a pillar 4 slice. DS processing unit A determines
time delays to send information between DS processing unit
A and each ofthe plurality of DS units 1-4. DS processing unit
A and the plurality of DS units 1-4may be operably coupled
via a network resulting in unique time delay values between
DS processing unit A and the plurality of DS units 1-4. The
time delay determination may be based on one or more of a
real time query (e.g., a ping), a lookup, a message, a vault
value, a command, a message from the DS managing unit,
and/or a predetermination. The DS processing unit A deter-
mines a time delay between the DS processing unit A and DS
unit 1 as time delay A1 (td A1), a time delay between the DS
processing unit A and DS unit 2 as time delay A2 (td A2), a
time delay between the DS processing unit A and DS unit 3 as
time delay A3 (td A3), and a time delay between the DS
processing unit A and DS unit 4 as time delay A4 (td A4).

DS processing unit B encodes a data segment in accor-
dance with the error coded dispersal stored function to pro-
duce a pillar 1 slice, a pillar 2 slice, a pillar 3 slice, and a pillar
4 slice. DS processing unit B determines time delays to send
information between DS processing unit B and each of the
plurality of DS units 1-4. DS processing unit B and the plu-
rality of DS units 1-4 may be operably coupled via the net-
work resulting in unique time delay values between DS pro-
cessing unit B and the plurality of DS units 1-4. The time
delay determination may be based on one or more of a real
time query (e.g., a ping), a lookup, a message, a vault value, a
command, a message from the DS managing unit, and a
predetermination. The DS processing unit B determines a
time delay between the DS processing unit B and DS unit 1 as
time delay B1 (td B1), a time delay between the DS process-
ing unit B and DS unit 2 as time delay B2 (td B2), a time delay
between the DS processing unit B and DS unit 3 as time delay
B3 (td B3), and a time delay between the DS processing unit
B and DS unit 4 as time delay B4 (td B4).

The DS processing unit A and DS processing unit B share
time delay information such that DS processing unit A deter-
mines td B1, td B2, td, B3, and td B4 and DS processing unit
B determines td A1, td A2, td, A3, and td A4. In an example,
the DS processing units A and B share the time delay infor-
mation via a link between them. In another example, the DS
processing units A and B share the time delay information via
passing the time delay information through one or more ofthe
DS units 1-4.

In an example of operation, the DS processing unit A
and/or B determines the DS unit and path of the plurality of
DS unit 1-4 with a longest time delay (td long) of all the time
delays td A1-td A4 and td B1-td B4. The DS processing unit
A and/or B determines a send delay (sd) number for each DS
processing A and B to each DS unit based on the longest time
delay and the time delay of the path to the DS unit as: sd=td
long—td. For example, the send delay for the path from the DS

US 9,344,500 B2

25
processing unit B to the DS unit 1 is send delay B1 (sd B1).
Note that the send delay for the one path of eight with the
longest delay is O.

In another example, the DS processing unit A and/or B
determines a read threshold number of DS units from the
perspective of each of the DS processing units A and B of the
plurality of the DS units that have shortest time delays (e.g.,
two paths). Next, the DS processing unit A and/or B deter-
mines the DS unit path with the longest time delay (td long) of
a subset of DS units that were determined to have the shortest
time delays. The DS processing unit A and/or B determines a
send delay (sd) number for each DS unit of the subset of DS
units that were determined to have the shortest time delays
based on the longest time delay value and the time delay of the
path to the DS unit as: sd=td long-td. The DS processing unit
A and/or B determines the send delay to be zero for the
remaining DS units outside of the subset of DS units that were
determined to have the shortest time delays. For example, the
send delay for the path from the DS processing unit A to the
DS unit 3 is send delay A3 (sd A3). Note that the send delay
for the path of the subset with the longest delay is O.

In the next step, the DS processing units A and B start send
delay timers for each of the values of the determined sends
delays at substantially the same time. The DS processing
units A and B send slices for a pillar to the DS unit when the
corresponding send timer expires. For example, DS process-
ing unit A sends pillar 1 slice to DS unit 1 when send timer sd
A1 expires. In another example, DS processing unit B sends
pillar 3 slice to DS unit 3 when send timer sd B3 expires, etc.

The DS unit receives the pillar slice from DS processing
unit A and B such that the data objects sent from DS process-
ing units A and B are stored in the DS units substantially at the
same time. Note that in an embodiment the slices of all of the
pillars from both DS processing units A and B become avail-
able at substantially the same time. In another embodiment a
read threshold slices for both data objects of the DS units with
the shortest time delays become available at substantially the
same time. An example timing diagram is discussed with
reference to FIG. 19.

FIG. 19 is another timing diagram of another example
storage sequence. As illustrated, the timing diagram illus-
trates the timing of two dispersed storage (DS) processing
units storing slices to a plurality of common DS units where
the slices from the two DS processing units arrive at the
common DS units at substantially the same time.

Asillustrated, the left edge of the timing diagram illustrates
the time when the DS processing units A and B start a unique
send delay timer sd A1, sd A2, sd A3, sd A4, sd B1, sd B2, sd
B3, and sd B4 upon starting a coordinated store sequence
(e.g., t=send from DS processing units A and B). Note that the
send delay for the third path sd A3=0 sincetd A3 is the longest
of the time delay values. The DS processing units A and B
send their slice to the DS units when each of the send timers
expires. Note that the slices are sent from the DS processing
units at different times. The time delays from the DS process-
ing units A and B to each of the DS units 1-4 is illustrated by
td Al,td A2, td A3, td A4, td B1, td B2, td B3, and td B4. The
slices arrive at the common DS units at substantially the same
time (e.g., t=arrive at DS units).

FIG. 20 is a flowchart illustrating an example of outputting
slices. The method begins with step 228 where a processing
module receives a store request and a data object to store from
any one of a user device, a DS processing unit, a storage
integrity processing unit, a DS managing unit, and another DS
unit. The request may include a command, a user ID, a data
object name, a data type, a data size, a priority indicator, a
security indicator, a performance indicator, operational

30

40

45

50

26

parameters, time delay to DS units information, and/or other
metadata pertaining to the data object.

At step 230, the processing module determines operational
parameters and a plurality of DS units of a DSN memory
storage set based on one or more of vault information, a
predetermination, a command, the user 1D, the data object
name, the data type, the data size, the priority indicator, the
security indicator, the performance indicator, the time delay
to DS units information, and the other metadata.

At step 232, the processing module determines other
potential DS processing sources that may send slices to the
same common set of DS units in accordance with a time-
coordinated approach based on one or more of a query, a
schedule, vault information, a predetermination, a command,
the user ID, the data object name, the data type, the data size,
the priority indicator, the security indicator, the performance
indicator, the time delay to DS units information, and the
other metadata. For example, a processing module of a DS
processing unit A may determine that a DS processing unit B
is another DS processing source by querying DS processing
unit B and receives an affirmative query response.

At step 234, the processing module determines time delays
to send information between the DS processing and each of
the plurality of DS units. Such a determination may be based
on one or more of a real time query of the plurality of DS units
(e.g., a ping), a query of the other DS processing source(s),
shared information between DS processing units, a lookup, a
message, a vault value, a command, a message from the DS
managing unit, and a predetermination.

At step 236, the processing module determines “send-
delays” for each DS unit of the plurality of DS units. Such a
determination may be based on one or more of the time
delays, the operational parameters, a message, a vault value,
a command, a message from the DS managing unit, and a
predetermination. In an example, the DS processing unit
determines the send-delay based on a DS unit with a longest
time delay as previously discussed. In another example, the
DS processing unit determines the send-delay based on a DS
unit with a longest time delay of a read threshold subset (e.g.,
including all DS unit storage sets from the DS processing
sources) of the plurality of DS units with the shortest time
delays as previously discussed.

At step 238, the processing module encodes the data object
utilizing an error coding dispersal storage function to produce
encoded data slices for each pillar. The DS processing starts a
timer for each DS unit path based on the value of the send
delay. At step 240, the processing module determines whether
it is time to send the slice to the DS unit based on the timer. For
example, the processing module determines that it is time to
send when the timer expires. The method repeats at step 240
when the DS processing determines that it is not time to send.

When it is time to send, the method continues at step 242
where the processing module sends the pillar slices in accor-
dance with the timer expiration to the corresponding DS unit.
At step 244, the processing module determines whether slices
ofall the pillars have been sent to the DS units based on which
pillars of encoded data slices were created and which pillars
of encoded data slices have been sent so far. Note that the
created pillars may be less than the pillar width n. The method
repeats at step 240 when all the pillars have not been sent and
ends when they have been.

As may be used herein, the terms “substantially” and
“approximately” provides an industry-accepted tolerance for
its corresponding term and/or relativity between items. Such
an industry-accepted tolerance ranges from less than one
percent to fifty percent and corresponds to, but is not limited
to, component values, integrated circuit process variations,

US 9,344,500 B2

27

temperature variations, rise and fall times, and/or thermal
noise. Such relativity between items ranges from a difference
of a few percent to magnitude differences. As may also be
used herein, the term(s) “operably coupled to”, “coupled to”,
and/or “coupling” includes direct coupling between items
and/or indirect coupling between items via an intervening
item (e.g., anitem includes, but is not limited to, a component,
an element, a circuit, and/or a module) where, for indirect
coupling, the intervening item does not modify the informa-
tion of a signal but may adjust its current level, voltage level,
and/or power level. As may further be used herein, inferred
coupling (i.e., where one element is coupled to another ele-
ment by inference) includes direct and indirect coupling
between two items in the same manner as “coupled to”. As
may even further be used herein, the term “operable to” or
“operably coupled to” indicates that an item includes one or
more of power connections, input(s), output(s), etc., to per-
form, when activated, one or more its corresponding func-
tions and may further include inferred coupling to one or
more other items. As may still further be used herein, the term
“associated with”, includes direct and/or indirect coupling of
separate items and/or one item being embedded within
another item. As may be used herein, the term “compares
favorably”, indicates that a comparison between two or more
items, signals, etc., provides a desired relationship. For
example, when the desired relationship is that signal 1 has a
greater magnitude than signal 2, a favorable comparison may
be achieved when the magnitude of signal 1 is greater than
that of signal 2 or when the magnitude of signal 2 is less than
that of signal 1.

The present invention has also been described above with
the aid of method steps illustrating the performance of speci-
fied functions and relationships thereof. The boundaries and
sequence of these functional building blocks and method
steps have been arbitrarily defined herein for convenience of
description. Alternate boundaries and sequences can be
defined so long as the specified functions and relationships
are appropriately performed. Any such alternate boundaries
or sequences are thus within the scope and spirit of the
claimed invention.

The present invention has been described, at least in part, in
terms of one or more embodiments. An embodiment of the
present invention is used herein to illustrate the present inven-
tion, an aspect thereof, a feature thereof, a concept thereof,
and/or an example thereof. A physical embodiment of an
apparatus, an article of manufacture, a machine, and/or of a
process that embodies the present invention may include one
or more of the aspects, features, concepts, examples, etc.
described with reference to one or more of the embodiments
discussed herein.

The present invention has been described above with the
aid of functional building blocks illustrating the performance
of certain significant functions. The boundaries of these func-
tional building blocks have been arbitrarily defined for con-
venience of description. Alternate boundaries could be
defined as long as the certain significant functions are appro-
priately performed. Similarly, flow diagram blocks may also
have been arbitrarily defined herein to illustrate certain sig-
nificant functionality. To the extent used, the flow diagram
block boundaries and sequence could have been defined oth-
erwise and still perform the certain significant functionality.
Such alternate definitions of both functional building blocks
and flow diagram blocks and sequences are thus within the
scope and spirit of the claimed invention. One of average skill
in the art will also recognize that the functional building
blocks, and other illustrative blocks, modules and compo-
nents herein, can be implemented as illustrated or by discrete

20

25

30

40

45

50

55

28

components, application specific integrated circuits, proces-
sors executing appropriate software and the like or any com-
bination thereof.

What is claimed is:

1. A method for synchronizing availability of data slices for
retrieval from distributed storage units based on storage trans-
mission delays, comprising:

determining transmission time delays between a process-

ing unit, having a processor, and a plurality of distributed
storage units communicating with the processing unit, in
which the plurality of distributed storage units are con-
figured to receive and store n number of encoded data
slices of a data segment by having a respective distrib-
uted storage unit store a respective one of the n encoded
data slices of the data segment and in which at least a
threshold number k of the n encoded data slices are
needed to reconstruct the data segment, where k is less
than n;

selecting a set of distributed storage units based on the

transmission time delays;

determining a longest transmission time delay from

respective transmission time delays for the selected set
of distributed storage units;

determining corresponding additional time delay value to

add to the respective transmission time delays for the
selected set of distributed storage units, in order to syn-
chronize total delay between the processing unit and
respective ones of the selected set of distributed storage
units to substantially coincide with the longest transmis-
sion time delay; and

transmitting n encoded data slices from the processing unit

to the plurality of distributed storage units, along with
corresponding additional time delay values to the
selected set of distributed storage units, in which the
corresponding additional time delay values are to be
utilized at the selected set of distributed storage units to
delay access to received encoded data slices at the
selected set of distributed storage units for an additional
time period determined by the corresponding additional
time delay value.

2. The method of claim 1, wherein when selecting the set of
distributed storage units, all of the plurality of distributed
storage units are selected as the selected set of distributed
storage units.

3. The method of claim 1, wherein when selecting the set of
distributed storage units, a subset of the plurality of distrib-
uted storage units is selected as the selected set of distributed
storage units.

4. The method of claim 1, wherein when selecting the set of
distributed storage units, a subset of the plurality of distrib-
uted storage units is selected as the selected set of distributed
storage units and the subset is selected based on shortest
transmission time delays.

5. The method of claim 1, wherein when selecting the set of
distributed storage units, k number of distributed storage
units are selected as the selected set of distributed storage
units.

6. The method of claim 1, wherein when selecting the set of
distributed storage units, k number of distributed storage
units are selected as the selected set of distributed storage
units and the k number of distributed storage units are
selected based on shortest transmission time delays.

7. The method of claim 1, wherein when transmitting the n
encoded data slices, a timer is to be used at the selected set of
distributed storage units to prevent access to the received
encoded data slices, in which the timer commences upon
receiving the encoded slices and expires based on the corre-

US 9,344,500 B2

29

sponding additional time delay value and in which corre-
sponding access for encoded data slice retrieval is granted
upon expiration of the timer for respective ones of the selected
set of distributed storage units.

8. A method for synchronizing availability of data slices for
retrieval from distributed storage units based on storage trans-
mission delays, comprising:

determining transmission time delays between a process-

ing unit, having a processor, and a plurality of distributed
storage units communicating with the processing unit, in
which the plurality of distributed storage units are con-
figured to receive and store n number of encoded data
slices of a data segment by having a respective distrib-
uted storage unit store a respective one of the n encoded
data slices of the data segment and in which at least a
threshold number k of the n encoded data slices are
needed to reconstruct the data segment, where k is less
than n;

selecting a set of distributed storage units based on the

transmission time delays;

determining a longest transmission time delay from

respective transmission time delays for the selected set
of distributed storage units;

determining corresponding additional time delay value to

add to the respective transmission time delays for the
selected set of distributed storage units, in order to syn-
chronize total delay between the processing unit and
respective ones of the selected set of distributed storage
units to substantially coincide with the longest transmis-
sion time delay; and

transmitting n encoded data slices from the processing unit

to the plurality of distributed storage units, but in which
the processor delays transmitting respective encoded
data slices to the selected set of distributed storage units
by a time period determined by the corresponding addi-
tional time delay values to synchronize arrival of the
respective encoded data slices to the selected set of dis-
tributed storage units.

9. The method of claim 8, wherein when selecting the set of
distributed storage units, all of the plurality of distributed
storage units are selected as the selected set of distributed
storage units.

10. The method of claim 8, wherein when selecting the set
of distributed storage units, a subset of the plurality of dis-
tributed storage units is selected as the selected set of distrib-
uted storage units.

11. The method of claim 8, wherein when selecting the set
of distributed storage units, a subset of the plurality of dis-
tributed storage units is selected as the selected set of distrib-
uted storage units and the subset is selected based on shortest
transmission time delays.

12. The method of claim 8, wherein when selecting the set
of distributed storage units, k number of distributed storage
units are selected as the selected set of distributed storage
units.

13. The method of claim 8, wherein when selecting the set
of distributed storage units, k number of distributed storage
units are selected as the selected set of distributed storage
units and the k number of distributed storage units are
selected based on shortest transmission time delays.

14. The method of claim 8, further comprising utilizing a
timer, in which the processor uses the timer to delay trans-
mitting respective encoded data slices to the selected set of
distributed storage units.

15. A method for synchronizing availability of data slices
for retrieval from distributed storage units based on storage
transmission delays, comprising:

10

15

20

25

35

40

45

50

55

60

65

30

determining a first set of transmission time delays between
a first processing unit, having a first processor, and a
plurality of distributed storage units communicating
with the first processing unit, in which the plurality of
distributed storage units are configured to receive and
store first n number of encoded data slices of a first data
segment from the first processing unit by having a
respective distributed storage unit store a respective one
of'the first n encoded data slices of the first data segment
and in which at least a threshold number k of the firstn
encoded data slices are needed to reconstruct the first
data segment, where k is less than n;

communicating between the first processing unit and a
second processing unit, which has a second processor, to
receive at the first processing unit a second set of trans-
mission time delays from the second processing unit, in
which the second processing unit and the plurality of
distributed storage units are configured to receive and
store second n number of encoded data slices of asecond
data segment by having respective distributed storage
unit store respective ones of the second n encoded data
slices of the second data segment and in which at least
the threshold number k of the second n encoded data
slices are needed to reconstruct the second data segment;

selecting a set of distributed storage units based on the first
set and second set of transmission time delays;

determining a longest transmission time delay from
respective transmission time delays for the selected set
of distributed storage units;
determining corresponding additional time delay value to
add to the respective first and second sets of transmission
time delays for the selected set of distributed storage
units, in order to synchronize total delay between the
first and second processing units and respective ones of
the selected set of distributed storage units to substan-
tially coincide with the longest transmission time delay
for the first and second processing units; and

communicating the corresponding additional time delay
value to the second processing unit from the first pro-
cessing unit in order to time manage transmission of the
first n encoded data slices from the first processing unit
to the plurality of distributed storage units and transmis-
sion of the second n encoded data slice from the second
processing unit to the plurality of distributed storage
units, but in which the first and second processors delay
transmitting respective encoded data slices to the
selected set of distributed storage units by a time period
determined by the corresponding additional time delay
values to synchronize arrival of the respective encoded
data slices from the first and second processing units to
the selected set of distributed storage units.

16. The method of claim 15, wherein when selecting the set
of distributed storage units, all of the plurality of distributed
storage units are selected as the selected set of distributed
storage units.

17. The method of claim 15, wherein when selecting the set
of distributed storage units, a subset of the plurality of dis-
tributed storage units is selected as the selected set of distrib-
uted storage units.

18. The method of claim 15, wherein when selecting the set
of distributed storage units, a subset of the plurality of dis-
tributed storage units is selected as the selected set of distrib-
uted storage units and the subset is selected based on shortest
transmission time delays.

US 9,344,500 B2

31

19. The method of claim 15, wherein when selecting the set
of distributed storage units, k number of distributed storage
units are selected as the selected set of distributed storage
units.

20. The method of claim 15, wherein when selecting the set
of distributed storage units, k number of distributed storage
units are selected as the selected set of distributed storage
units and the k number of distributed storage units are
selected based on shortest transmission time delays.

#* #* #* #* #*

10

32

